<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1 – Turbulence observations in the ocean or in the lab</th>
</tr>
</thead>
</table>
| 09:00 - 10:10 | **Keynote: W. Smyth**
Marginal instability and deep cycle turbulence in the equatorial Pacific cold tongue
Oregon State University
USA |
| 10:10 - 10:30 | 010 Bluteau C., Ivey G., Jones N.L., Rayson M.D.
Acquiring turbulence observations in oceanic stratified-sheared flows
University of Western Australia
Australia |
| 10:30 - 10:50 | 116 Liu Z.
Fission of internal solitary waves over shoaling topography cascades tidal energy to turbulence
Xiamen University
China |
| 10:50 - 11:10 | 82 Schultze L., Merckelbach L., Carpenter J.
Shallow stratified shelf sea turbulence and mixing rates measured by autonomous underwater gliders
Helmholtz-Zentrum Geesthacht
Germany |
| 11:10 - 11:30 | Coffee break |
| 11:30 - 11:50 | 067 Passaggia P.-Y., White B., Scotti A.
Shear-driven mixing at high buoyancy Reynolds numbers
University of North Carolina Chapel Hill
USA |
| 11:50 - 12:10 | 036 Ghasemi A., Will A., Harlander U.
Mean flow generation by an intermittently unstable boundary layer over a sloping wall
Brandenburgische Technische Universität Cottbus-Senftenberg
Germany |
| 12:10 - 14:00 | Break |
| 14:00 - 14:20 | 035 Fer I., Bosse A., Ferron B., Bouruet-Aubertot P.
The dissipation of kinetic energy in the Lofoten Basin Eddy
University of Bergen
Norway |
| 14:20 - 14:40 | 080 Scheifele B., Waterman S., Carpenter J.
Turbulent Dissipation Rates, Mixing, and Heat Fluxes in the Canadian Arctic from Glider-based Microstructure Measurements
University of British Columbia
Canada |
| 14:40 - 15:00 | 051 Lenn Y.-D., Silvester J., Polton J., Morales Maqueda M.
Turbulent cooling of a UCDW eddy on the Antarctic continental slope
Bangor University
UK |
Ocean mixing beneath Pine Island Glacier ice shelf, West Antarctica
Nansen Environmental and Remote Sensing Center and Bjerknes Centre for Climate Research
Norway |
Evolution of turbulence in a rotating gravity current descending on a topographic slope
Leibniz-Institute for Baltic Sea Research
Germany |
| 15:40 - 16:00 | Coffee break |
| 16:00 - 16:20 | 075 Rippeth, T.P., Moum J.
Do observations adequately resolve the natural variability of oceanic turbulence: Revisited
Bangor University
UK |
| 16:20 - 16:40 | 034 Evans D.G., Hemsley V., Frajka-Williams E., Martin A., Painter S., Naveira Garabato A.
Estimating turbulence from Seagliders
University of Southampton
UK |
| 16:40 - 17:00 | 017 Caldeira R., Gomiz-Pascual J., Reis J.
Seamount induced turbulent mixing and their biological entrapment
OOM/ARDITI
Portugal |
| 17:00 - 17:20 | 058 McMillan J., Hay A., Lueck R., Wolk F.
Measurements of the Rate of Dissipation of TKE in a High Reynolds Number Tidal Channel Using ADCPs and Shear Probes
Dalhousie University
Canada |
<p>| 17:20 - 20:00 | Ice Breaker party |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 2- Modeling of Ocean Turbulence</th>
</tr>
</thead>
</table>
| 09:00 - 09:40 | **Keynote: Alberto Scotti**
Energy and mixing in stratified turbulent flows
UNC, Marine Sciences USA |
| 09:40 - 10:00 | 091 Tailleux R.
Mathematical versus physical constraints on ocean mixing parameterisations
University of Reading UK |
| 10:00 - 10:20 | 061 Morel Y., Gula J., Ponte A.
New integral properties for Potential Vorticity and applications to the ocean dynamics
CNRS/LEGOS France |
| 10:20 - 10:40 | 095 Thomas J., Buhler O., Smith S.
Wave-vortex interactions in rotating shallow water
Courant Institute of Mathematical Sciences USA |
| 09:40 - 11:00 | Coffee break |
| 11:00 - 11:40 | 094 Taylor J.
Large-eddy simulations of the interaction between sub-mesoscale eddies and three-dimensional turbulence
University of Cambridge UK |
| 11:40 - 12:00 | 014 Brereton A., Tejada-Martinez A., Polton J.
Mixing under internal tides: A Large-Eddy Simulation investigation
National Oceanography Centre UK |
| 11:40 - 12:00 | 068 Penney J., Morel Y., Haynes P., Auclair F., Nguyen C.
Influence of mixing on tracer evolution in stratified flows: theoretical aspects and numerical results.
CNRS/LEGOS France |
| 12:00 - 12:20 | 027 Costa A., Doglioli A., Marsalaix P., Petrenko A.
Comparison of in situ microstructure measurements to different turbulence closure schemes in a 3-D numerical ocean circulation model
Mediterranean Institute of Oceanography (MIO) France |
| 12:20 - 14:00 | Break |
| 14:00 - 14:20 | 041 Hochet A., Tailleux R., Ferreira D., Kuhlbrodt T.
Isoneutral control of effective diapycnal mixing in numerical ocean models with neutral rotated diffusion tensors
University of Reading UK |
| 14:20 - 14:40 | 019 Chavanne C., Klein P., Sasaki H.
Diagnosing the Upper Ocean 3D Circulation from High-Resolution Surface Data in a Realistic Simulation of the North Pacific Ocean
ISMER-UQAR Canada |
| 14:40 - 15:00 | 071 Polton J., Guihou K., Brereton A., Luneva M.
Pycnocline Mixing is Seasonally Stratified Shelf Seas
National Oceanography Centre UK |
| 15:00 - 15:20 | 021 Chu P.
Hilbert-Huang Transform to Estimate Turbulent Diffusion Coefficient from Lagrangian Drifter Trajectory
Naval Postgraduate School USA |
| 15:20 - 16:00 | Coffee break |
| 16:00 - 16:20 | 090 Stashchuk N., Vlasenko V., Inall M.E., Aleynik D.
Horizontal dispersion in shelf seas: high resolution modelling as an aid to sparse sampling
University of Plymouth UK |
| 16:20 - 16:40 | 106 Vlasenko V., Stashchuk N., Nimmo-Smith A., Howell K.
North Atlantic water overflow through the Wyville Thomson Ridge: Observational evidence and numerical modelling
University of Plymouth UK |
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 3 - Interaction of turbulence with internal gravity waves and balanced flow</th>
</tr>
</thead>
</table>
| 09:00 - 09:40 | **Keynote: Dirk Olbers**
09:00 - 09:40
09:40 - 10:00
10:00 - 10:20
10:20 - 10:40
10:40 - 11:00 | Internal gravity waves as mediator of mixing and drag in the ocean circulation
032 Domina A., Palmer M., Sharples J., Vlasenko V., Stashchuk N., Green M.
006 Bartello P.
108 Wain D.
11:00 - 11:20 | Alfred Wegener Institute
Germany
University of Liverpool
UK
McGill University
Canada
University of Bath
UK
Institut für Meereskunde, Universität Hamburg
Germany
University of Cambridge
UK
Scripps Institution of Oceanography/UC San Diego
USA
University of Bath
UK
Stanford University
USA
University of Washington
USA
Scripps Institution of Oceanography/UC San Diego
USA
University of Bath
UK
University of Washington
USA
Hamburg University
Germany
Laboratory of Dynamical Meteorology, Ecole Normale Superieure, Paris
France
University of Bath
UK |
| 11:00 - 11:20 | **Coffee**
11:20 - 11:40
11:40 - 12:00 | Gravity wave emission from balanced flow en route to turbulence
The Effects of Turbulent Viscosity on Frontogenesis and Diffusion
Turbulence induced by overturning breaking waves: from small scale mixing to large scale overturning circulation
020 Chouksey M., Eden C., Brüggemann N.
028 Crowe M.N., Taylor J.R.
057 Mashayek A., Alford M.H., Caulfield C., Peacock T. |
| 12:00 - 14:00 | **Break**
14:00 - 14:40 | **Keynote: Jacques Vanneste**
14:00 - 14:40
14:40 - 15:00
15:00 - 15:20
15:20 - 16:00 | Stimulated loss of balance and other mechanisms of wave–turbulence interactions
063 Nadiga B.
070 Pollmann F., Nycander J., Eden C., Olbers D.
113 Zeitlin V., Gouzien E., Lahaye N., Dubos T. |
| 16:00 - 16:20 | **Coffee**
16:20 - 16:40 | How does internal tide generation vary in the horizontal?
Instabilities of vortices in thermal rotating shallow water model, and their nonlinear saturation
070 Pollmann F., Nycander J., Eden C., Olbers D.
113 Zeitlin V., Gouzien E., Lahaye N., Dubos T. |
| 19:00 - 22:30 | Colloquium Dinner: "Crowne Plaza Hotel" - 19:00: Reception at Crowne Plaza Hotel - 20:00: Dinner at Crowne Plaza Hotel
Wednesday, May 24th, 2017
Coffee
Break
Coffee
Keynote: Jacques Vanneste
Stimulated loss of balance and other mechanisms of wave–turbulence interactions
063 Nadiga B.
070 Pollmann F., Nycander J., Eden C., Olbers D.
113 Zeitlin V., Gouzien E., Lahaye N., Dubos T.
11:00 - 11:20
11:20 - 11:40
11:40 - 12:00 |
Thursday, May 25th, 2017

Session 4 - Session: Turbulence in the surface and bottom boundary layers

<table>
<thead>
<tr>
<th>Time</th>
<th>Presenter(s)</th>
<th>Title</th>
<th>Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:40</td>
<td>Keynote: Leif Thomas</td>
<td>Symmetric Instability (SI)-Turbulence: A Unique Form of Boundary Layer Turbulence</td>
<td>School of Earth, Energy and Environmental, Stanford University</td>
<td>USA</td>
</tr>
<tr>
<td>09:40 - 10:00</td>
<td>45 Johnson L., Lee C., D'Asaro E.</td>
<td>Submesoscale Turbulence in a Mixed Layer Front: Observations, Dynamics and Implications</td>
<td>Applied Physics Lab, University of Washington</td>
<td>USA</td>
</tr>
<tr>
<td>10:00 - 10:20</td>
<td>39 Grisouard N., Fox M., Nijjer J.</td>
<td>Conservation laws and inertial-symmetric instability</td>
<td>University of Toronto</td>
<td>Canada</td>
</tr>
<tr>
<td>10:20 - 10:40</td>
<td>15 Buckingham C., Lucas N., Naveira Garabato A., Rippeth T., Yu X., Belcher S.</td>
<td>Submesoscale instabilities and enhanced dissipation at ocean fronts</td>
<td>British Antarctic Survey</td>
<td>UK</td>
</tr>
<tr>
<td>10:40 - 11:00</td>
<td>Coffee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 - 11:20</td>
<td>53 Liu G., Perrie W.</td>
<td>Underwater Glider Measurements and Simulations of Storm-Induced Abrupt Upper Ocean Mixing</td>
<td>Dalhousie University</td>
<td>Canada</td>
</tr>
<tr>
<td>11:20 - 11:40</td>
<td>74 Reichl B., Hallberg R., Griffies S., Adcroft A., Li Q., Fox-Kemper B.</td>
<td>An Energetically Constrained Ocean Surface Boundary Layer Parameterization including Surface Wave Effects for Climate Applications</td>
<td>Princeton University/NOAA GFDL</td>
<td>USA</td>
</tr>
<tr>
<td>11:40 - 12:00</td>
<td>119 Yu X., Naveira Garabato A., Martin A., Buckingham C., Brannigan L.</td>
<td>The Annual Cycle of Upper-Ocean Potential Vorticity and its Relationship with Submesoscale Instabilities: Insights from Mooring Observations</td>
<td>University of Southampton</td>
<td>UK</td>
</tr>
<tr>
<td>12:00 - 12:20</td>
<td>89 Soloviev A., Dean C., Lukas R., Donelan M., Terray E.</td>
<td>Langmuir cells and ramp-like structures in the upper ocean turbulent boundary layer</td>
<td>Nova Southeastern University</td>
<td>USA</td>
</tr>
<tr>
<td>12:20 - 14:00</td>
<td>Break</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 14:20</td>
<td>29 Cyr F., Buckley M., van der Lee E., Lappe C., van Haren H., Umlauf L.</td>
<td>High-resolution observations of wind-driven mixing in the Baltic Sea</td>
<td>Fisheries and Oceans Canada (DFO)</td>
<td></td>
</tr>
<tr>
<td>14:20 - 14:40</td>
<td>100 Umlauf L., Lappe C.</td>
<td>Boundary mixing in nontidal basins: Observations from the Baltic Sea</td>
<td>Leibniz-Institute for Baltic Sea Research</td>
<td>Germany</td>
</tr>
<tr>
<td>14:40 - 15:00</td>
<td>083 Schulz K., Endoh T., Umlauf L.</td>
<td>Slope-induced tidal straining: Analysis of rotational effects</td>
<td>NIOZ Netherlands Institute for Sea Research, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>15:00 - 15:20</td>
<td>103 Venayagamoorthy S.K.</td>
<td>Prediction of turbulent diapycnal mixing in density stratified flows</td>
<td>Colorado State University</td>
<td>USA</td>
</tr>
</tbody>
</table>

Poster Session with free beer and coffee
Session 5 - Turbulence and the marine ecosystem

Friday, May 26th, 2017

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00 - 09:40</td>
<td>Keynote: Peter J.S. Franks</td>
<td>Oceanic turbulence from a plantonic perspective</td>
<td>Scripps Institution of Oceanography, USA</td>
</tr>
<tr>
<td>09:40 - 10:00</td>
<td>102 Variano E., Pujara N., Bordoloi A.</td>
<td>Kinematics of non-spherical particles in turbulence: effect of size and shape</td>
<td>University of California, USA</td>
</tr>
<tr>
<td>10:00 - 10:20</td>
<td>111 Yamazaki H., Mandal S., Takeuchi M., Homma H., Tanaka M.</td>
<td>Oceanic turbulence and highly intermittent phytoplankton dynamics</td>
<td>Tokyo University of Marine Science and Technology, Japan</td>
</tr>
<tr>
<td>10:20 - 10:40</td>
<td>92 Takeuchi M., Doubell M., Jackson G., Yamazaki H.</td>
<td>Turbulence controls size distribution of aggregates: in-situ observations by a microstructure profiler and a cabled observatory</td>
<td>Tokyo University of Marine Science and Technology, Japan</td>
</tr>
<tr>
<td>10:40 - 11:00</td>
<td>Coffee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:00 - 11:20</td>
<td>104 Villamaña M., Mouriño-Carballido B., Marañón E., G. Figueiras F., Otero-Ferr J.-L., Reguera B.</td>
<td>What is the role of mixing in controlling microphytoplankton community composition?</td>
<td>Universidade de Vigo, Spain</td>
</tr>
<tr>
<td>11:20 - 11:40</td>
<td>93 Tanaka M.</td>
<td>Flow-limited diurnal vertical migration</td>
<td>Tokyo University of Marine Science and Technology, Japan</td>
</tr>
<tr>
<td>11:40 - 12:00</td>
<td>30 Dean C., Soviev A.</td>
<td>Bioturbulence Produced by Diel Vertical Migration of Zooplankton</td>
<td>Nova Southeastern University, USA</td>
</tr>
<tr>
<td>12:00 - 12:20</td>
<td>54 Luneva M., Wakelin S., Palmer M.</td>
<td>Assessment of the impact of the turbulence closure schemes on the nutrient availability in shelf sea models.</td>
<td>National Oceanography Centre, UK</td>
</tr>
<tr>
<td>12:20 - 14:00</td>
<td>Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00 - 14:20</td>
<td>77 Ruiz Villarreal M., García-Garcia L.M., Marta-Almeida M., Mouriño-Carballido B., Cobas M.</td>
<td>Turbulence and mixing in the NW Iberian shelf in response to upwelling events</td>
<td>Instituto Español de Oceanografía (IEO), Spain</td>
</tr>
<tr>
<td>14:20 - 14:40</td>
<td>76 Renosh P.R., Schmitt F.G., Loisel H.</td>
<td>Multiscale analysis of ocean color turbulent heterogeneities: comparisons of SST and Chl-a multifractal properties using 2D structure functions</td>
<td>Conservatoire National des Arts et Métiers, Laboratoire CEDRIC, France</td>
</tr>
<tr>
<td>14:40 - 15:00</td>
<td>8 Bettencourt J., Rossi V., Garçon V., Haynes P., Morel Y.</td>
<td>Impact of submesoscale turbulence in dissolved O2 in an upwelling system</td>
<td>LEGOS, France</td>
</tr>
</tbody>
</table>
Posters

Session 1 – Turbulence observations in the ocean or in the lab

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td>First turbulence observations in the southern Brazilian shelf</td>
<td>Ávila A. R., Calil P.H R.</td>
<td>Universidade Federal do Rio Grande</td>
<td>Brasil</td>
</tr>
<tr>
<td>011</td>
<td>Microstructure turbulence profiles at the Gibraltar Strait</td>
<td>Bolado-Penagos M., Gomiz-Pascual J.J., Vázquez A., Bruno M., Caldeira R.M.</td>
<td>Universidade de Cádiz</td>
<td>Spain</td>
</tr>
<tr>
<td>013</td>
<td>Final-scale dynamics and energy dissipation of the Lofoten Basin Eddy measured by Seagliders</td>
<td>Bosse A., Fer I.</td>
<td>University of Bergen</td>
<td>Norway</td>
</tr>
<tr>
<td>023</td>
<td>A statistical look at ocean turbulence from high resolution Eulerian observations</td>
<td>Cimitaribus A., van Haren H.</td>
<td>EPFL</td>
<td>Switzerland</td>
</tr>
<tr>
<td>025</td>
<td>Near-inertial waves in a Mid-ocean Deep Fracture Zone</td>
<td>Clement L., Thurnherr A.M.</td>
<td>EPF</td>
<td>USA</td>
</tr>
<tr>
<td>040</td>
<td>Preliminary comparison of microstructure data collected from Seaglider and Slocum glider platforms</td>
<td>Hall R.</td>
<td>University of East Anglia</td>
<td>UK</td>
</tr>
<tr>
<td>043</td>
<td>Fast-ice control of TKE dissipation rate on the West Antarctic Peninsula shelf</td>
<td>Inall M., Brearley A.</td>
<td>SAMS</td>
<td>UK</td>
</tr>
<tr>
<td>049</td>
<td>Vertical structure of the turbulence intensity and power density in an asymmetrical tidal flow: the turbulence measurements in the Eastern English channel</td>
<td>Korotenko K., Sentchev A.</td>
<td>Shirshov Institute of Oceanology, Moscow</td>
<td>Russia</td>
</tr>
<tr>
<td>066</td>
<td>Direct measurements of mixing efficiency from ocean mixing glider measurements</td>
<td>Palmer M.</td>
<td>NOC</td>
<td>UK</td>
</tr>
<tr>
<td>072</td>
<td>Fate of internal solitary waves in Manado Bay, Indonesia</td>
<td>Purwandana A.</td>
<td>LOCEAN</td>
<td>France</td>
</tr>
<tr>
<td>079</td>
<td>A Modification to the Structure Function Method to Correct for the Impact of Wave Orbital Velocity Shear</td>
<td>Scannell B.</td>
<td>Bangor University</td>
<td>UK</td>
</tr>
<tr>
<td>081</td>
<td>Comparisons between transect and fixed point measurements in an oceanic turbulent flow: comparisons between intermittency parameters</td>
<td>Schmitt F.</td>
<td>CNRS, Laboratory of Oceanology and Geosciences</td>
<td>France</td>
</tr>
<tr>
<td>087</td>
<td>Regional dynamics influence on small-scale mixing in the boundary current regions of the North Western Mediterranean and the northwestern Japan Sea</td>
<td>Shatrain A. and Ostrovskii A.</td>
<td>Shirshov Institute of Oceanology</td>
<td>Russia</td>
</tr>
<tr>
<td>105</td>
<td>Characterisation of mixing efficiency from microstructure measurements in the Sicily Channel</td>
<td>Vladoiu A., Bouruet-Aubertot P., Cuypers Y., Ferron B., Schroeder K., Borghini M., Bryden H., Ben Ismail S.</td>
<td>L'OCEAN UPMC, Paris</td>
<td>France</td>
</tr>
<tr>
<td>115</td>
<td>A preliminary study of small scale turbulence and its association with (sub-) mesoscale processes in the Denmark Strait overflow plume</td>
<td>Kritselalakis S.</td>
<td>Alfred-Wegener-Institute for Polar and Marine Research</td>
<td>Germany</td>
</tr>
<tr>
<td>117</td>
<td>Regimes of oceanic turbulence in the Western Mediterranean represented by satellite data</td>
<td>Karimova S.</td>
<td>University of Liege</td>
<td>Belgium</td>
</tr>
<tr>
<td>120</td>
<td>Turbulent dissipation at the western boundary of the Atlantic in an eddy</td>
<td>Frajka-Williams E.</td>
<td>University of Southampton</td>
<td>UK</td>
</tr>
</tbody>
</table>

Session 2 - Modeling of Ocean Turbulence

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>018</td>
<td>Multi-scale modeling of instabilities, internal waves and turbulence with SOMAR-LES</td>
<td>Chalamalla V.K., Santilli E., Scotti A., Sarkar S.</td>
<td>University of North Carolina Chapel Hill</td>
<td>USA</td>
</tr>
<tr>
<td>022</td>
<td>Lake Geneva as a natural laboratory for coastal transport processes</td>
<td>Cimitaribus A., Lemmin U., Reiss R., Barry A.</td>
<td>EPFL</td>
<td>Switzerland</td>
</tr>
<tr>
<td>031</td>
<td>Using the age to diagnose the evolution of turbulence kinetic energy and, possibly, other variables unrelated to the concentration of a constituent</td>
<td>Deleersnijder E., Burchard H., Delandmeter P., Delhez E.J.M., Hanert E., Mouchet A., Umlauf L.</td>
<td>Université catholique de Louvain</td>
<td>Belgium</td>
</tr>
<tr>
<td>047</td>
<td>A numerical study of wind and tidal mixing in Maryland Coastal Bays</td>
<td>Kang X., Xia M.</td>
<td>University of Maryland Eastern Shore</td>
<td>USA</td>
</tr>
<tr>
<td>059</td>
<td>The impact of advection schemes on restratification due to lateral shear and baroclinic instabilities</td>
<td>Mohammadi Aragh M., Klingbeil K., Brüggemann N., Eden C., Burchard H.</td>
<td>Alfred Wegener Institute</td>
<td>Germany</td>
</tr>
<tr>
<td>069</td>
<td>Direct numerical simulation of Rayleigh-Taylor instabilities subject to double-diffusion</td>
<td>Penney J., Stastna M.</td>
<td>LEGOS</td>
<td>France</td>
</tr>
<tr>
<td>097</td>
<td>The role of barotropic to baroclinic tidal energy conversion: a view towards improved turbulent mixing parameterisation in shelf seas</td>
<td>Toberman M., Inall M., Polton J., Pelling H., Palmer M., Rippeth T.</td>
<td>The Scottish Association for Marine Science</td>
<td>Scotland</td>
</tr>
</tbody>
</table>
Session 3 - Interaction of turbulence with internal gravity waves and balanced flow

024 Clary J., Chavanne C., Nadeau L.-P. Is it possible to estimate KE transfers from HF radar? UQAR-ISMER

085 Senior N. On the Relationship Between Turbulent Cascades and Eddy Tilts University of East Anglia UK

007 Basdurak N.B., Burchard H. Submesoscale turbulence in the surface boundary layer: Fronts Leibniz Institute for Baltic Sea Research Germany

Session 4 - Turbulence in the surface and bottom boundary layers

052 Liang C-R, Shang X-D, Chen G-Y Spatial distribution of turbulent mixing in the upper ocean of the South China Sea South China Sea Institute of Oceanology, Chinese Academy of Sciences China

062 Morvan M., Carton X., L'Hegaret P. The generation of submesoscale eddies and of turbulence by a row of mesoscale surface eddies in the Sea of Oman LOPS/IUEM, UBO, Brest France

098 Toorman E., Ouda M. Marine turbulence in nearshore and surfzone areas KU Leuven Belgium

099 Troy C., Cannon D. Benthic turbulence in the deep waters of a large lake Purdue University USA

Session 5 - Turbulence and the marine ecosystem

046 Jung H., Jang C.J., Kang H-W Effects of vertical mixing on low trophic ecosystem in the Ulleung Basin, East Sea Korea Institute of Ocean Science & Technology Korea

055 Maneeesh T.P., Smitha B.R. Mesoscale Eddy Induced Nutrient pumping and its Biological Response in the North Eastern Arabian Sea during Winter-Spring Transition Cochin University of Science and Technology, Kochi India

073 Reale M., Solidoro C., Giorgi F., Di Biagio V., Mariotti L., Farneti R. Preliminary results over the Med-CORDEX domain of a new high resolution Regional earth system model with an active biogeochemical component ICTP (Trieste, Italy)-OGS (Trieste, Italy) Italy

096 Tippenhauer S., Wulff T., Von Appen W.J. AUV based study on physical and ecological processes at fronts Alfred Wegener Institute for Polar and Marine Research, Bremerhaven Germany

110 Xia M., Jiang L. How climate changed driven turbulent mixing impact the water quality dynamics: A case study in Chesapeake Bay, USA University of Maryland Eastern Shore USA

121 Ivanov E., Capet A., Barth A., Delhez E., Soetaert K., Grégoire M. 3D hydrodynamical modelling of the Southern Bight of the North Sea: first achievements and perspectives MAST, University of Liège Belgium