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Abstract

A coarse grid primitive equation model of 1/4◦ resolution is implemented cov-
ering the whole Mediterranean Sea. Within this grid a 1/20◦ resolution model
of the Liguro-Provençal basin and the northern part of the Tyrrhenian Sea is
embedded. A third fine resolution model of 1/60◦ is nested in the latter one
and simulates the dynamics of the Ligurian Sea (Barth et al., 2003). Com-
parisons between one-way and two-way nesting in representing the Northern
Current (NC) are made.

This system of nested models is coupled with a simplified Kalman-filter based
assimilation method. The state vector for the data assimilation is composed
by the temperature, salinity and elevation of the three models. The forecast
error is estimated by an ensemble run by perturbing initial conditions and
atmospheric forcings. The leading empirical orthogonal functions (EOF) of
this ensemble are taken as the error covariance of the model forecast. This
error covariance is assumed to be constant in time. Sea surface temperature
(SST) and sea surface height (SSH) are assimilated in this system.

Data assimilation is also used to couple the hydrodynamic model with a sta-
tistical predictor of SST in the Ligurian Sea. The forecast improvement of
this hybrid modelling system is shown and applications to operational models
are highlighted.
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3.5.4 The Liguro-Provençal front . . . . . . . . . . . . . . . . . . . . . . 50

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Sequential assimilation methods 53

4.1 Optimal interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Lowering and Lifting scheme . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 System for Ocean Forecasting and Analysis (SOFA) . . . . . . . . . 55

4.2 Statistical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Probabilistic forecast . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Ensemble forecasts, the Monte Carlo method . . . . . . . . . . . . . 59

4.2.3 The Lyapunov equation . . . . . . . . . . . . . . . . . . . . . . . . 60

Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.4 The Lyapunov equation with a Reduced Rank error covariance . . . 65

Error forecast with a square root representation . . . . . . . . . . . 65

Error forecast with a subspace representation . . . . . . . . . . . . 66

Error forecast with a fixed subspace . . . . . . . . . . . . . . . . . . 68

4.2.5 Relationship between the ensemble and reduced rank representation 69

From an ensemble to the square root of the error covariance . . . . 69

From the square root of the covariance to an ensemble . . . . . . . 72

Relationship between square root representation and eigenvector
decomposition . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Particle filter and Sequential Importance Resampling . . . . . . . . 76

4.3.2 What is the “best” estimation of the state vector? . . . . . . . . . . 77

4.3.3 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.4 Stochastic Kalman Filter Analysis . . . . . . . . . . . . . . . . . . . 82

The Ensemble Kalman filter analysis . . . . . . . . . . . . . . . . . 82

The stochastic ESSE filter . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.5 Deterministic Kalman filter analysis . . . . . . . . . . . . . . . . . . 87

The SESAM and the Ensemble Transform Kalman filter analysis . 87

The Ensemble Adjustment Kalman filter . . . . . . . . . . . . . . . 89

Reduced Rank Square root Kalman filter (RRSQRT filter) . . . . . 90

The SEEK filter analysis . . . . . . . . . . . . . . . . . . . . . . . . 90

The ESSE analysis scheme . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Summary of reduced rank Kalman filters . . . . . . . . . . . . . . . . . . . 92

4.5 Description of the assimilation scheme implemented to the system of nested
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.1 Estimation of error covariance of the model forecast . . . . . . . . . 95

4.5.2 Dominant error modes . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5.4 Simplification of the error forecast . . . . . . . . . . . . . . . . . . . 95



9

5 Programming aspects 97
5.1 The GHER model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.1 Relocatable model implementation . . . . . . . . . . . . . . . . . . 97
The model bathymetry . . . . . . . . . . . . . . . . . . . . . . . . . 98
The climatology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
The initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Remaining implementation steps . . . . . . . . . . . . . . . . . . . 98

5.1.2 The Ligurian Sea model implementation . . . . . . . . . . . . . . . 99
Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Model parallelisation . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.3 Algerian Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.1 Coding aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.2 Interface to the assimilation package . . . . . . . . . . . . . . . . . 106
5.2.3 Binary data format . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2.4 The initialisation file . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.5 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
The observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
The diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.6 Alternative analysis schemes . . . . . . . . . . . . . . . . . . . . . . 113

6 Assimilation of SST and SSH 117
6.1 Ensemble generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.2 Atmospheric forcings . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.1.3 Model integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.1.4 Analysis of the ensemble . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Multivariate covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Empirical orthogonal functions . . . . . . . . . . . . . . . . . . . . 121

6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.1 State vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.2 Error space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.3 Covariance localisation . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4 Benefit of a unique multigrid state vector . . . . . . . . . . . . . . . . . . . 128
6.5 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.1 Sea surface temperature . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5.2 Sea surface height . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5.3 Observation operator . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.6 Treatment of the observation error covariance matrix . . . . . . . . . . . . 132
6.6.1 Impact of correlated observations . . . . . . . . . . . . . . . . . . . 132
6.6.2 Alternative schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.6.3 Comparison of the different schemes . . . . . . . . . . . . . . . . . . 134
6.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



10 Contents

6.7 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.7.1 Calibration of the 10 km SST and SSH . . . . . . . . . . . . . . . . 141
6.7.2 Calibration of the 1 km SST . . . . . . . . . . . . . . . . . . . . . . 142

6.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.9 Sirena Cruise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.10 Surface velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7 Hybrid modelling system 153
7.1 Statistical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2 EOF decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.3 Application of the SOFT predictor . . . . . . . . . . . . . . . . . . . . . . 156
7.4 Assimilation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.5 The predicted SST compared to climatology and persistence . . . . . . . . 158
7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8 Summary and conclusions 165

A Derivation of the Fokker-Plank equation 169

B Some matrix identities 171

C Eigenvector decomposition of covariance matrices 173

D Derivation of the Kalman filter analysis from a Bayesian approach 175

E EOF as an optimal function basis for representing a series of fields 177

F Notations 179

References 202



Chapter 1

Introduction

Data assimilation is a generic technique for combining the dynamical knowledge of
a system with other information in a statistically optimal way. Numerical models of
environmental systems must generally represent a broad range of scales and processes.
They are subject to uncertainties resulting from unresolved processes and approximative
parameterisations. Data assimilation aims to reduce these uncertainties by correcting
the model using other information e.g. satellite or in situ observations.

In order to model the dynamics of an environmental system, a complete description
of its state at an initial time is necessary. An initial condition for the ocean is often
obtained from climatology, which at best can only give a reliable estimation for large
features. Direct observations give a much better estimation of the ocean state, but they
are, especially in oceanography, costly and require a demanding infrastructure.

The dynamics of an environmental system are influenced by the evolution of adjacent
systems. The ocean circulation, for example, is to a large extent dependent on the
atmospheric heat, freshwater and momentum fluxes. It is a difficult task to obtain
accurate information on these adjacent systems. They also generally involve substantial
modelling efforts. The forcings are thus subjected to uncertainties and the impact of
error in the forcing fields should be taken into account.

Besides the model itself, initial and boundary conditions are therefore further error
sources. But once the system is closed, there is no possibility in the frame of the system
dynamical formulation to impose other constrains. For example, if the surface heat flux
is imposed to an ocean model, the observed sea surface temperature (SST) cannot be
prescribed as an additional boundary condition. For a perfect model with the perfect
initial and boundary conditions, the SST would be redundant and useless information.
Imposing both, SST and heat flux, would result in an ill-posed and over-constrained
problem. However, models are far from perfect and all additional information can be used
to improve the model. In order to take more information into account than the necessary
minimum, the model must be placed into a statistical context making allowance for the
errors in the model dynamics, initial state and forcing terms. Data assimilation consists
thus in finding the most likely state of the system in accordance with the additional
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12 Chapter 1. Introduction

information available.

The two main theoretical frames of data assimilation are statistical estimation (Jazwin-
ski, 1970; Gelb, 1974) and optimal control (Stengel, 1986; Chua and Bennett, 2001).
Depending on the data assimilation algorithm, assimilation methods can also be divided
into two different classes: sequential (nudging, optimal interpolation, 3D-Var, Kalman
filter) and non-sequential assimilation methods (4D-Var, representer method, Kalman
smoother). In each theoretical frame, both sequential and non-sequential scheme are
derived.

The sequential assimilation methods consist in two successive steps: the forecast and
the analysis. During the forecast step, the ocean state at the next time instant when
observations are available, is predicted based on the ocean state from the last analysis.
This forecast step is the same for all sequential methods. In the analysis step, the model
forecast is combined with the observations. For non-sequential methods, the assimilation
algorithm is more complex. Besides the forward integration, the information of the
observations is also integration backward in time.

Nudging, optimal interpolation, Kalman filter and Kalman smoother are assimilation
methods derived in the frame of statistical estimation. In nudging, only the error
variances are considered. The analysis step is integrated in the governing equations of the
model. A supplementary source or sink term is added to the prognostic equation of the
observed variable. This term represents either a source or a sink if the variable is under-
or overestimated respectively. This technique was applied, for example, to assimilate
altimetry (e.g. Blayo et al., 1996, in the North Atlantic), sea surface temperature and in
situ temperature and salinity (e.g. Rixen, 1999, in the Alboran Sea). The main problem
with this technique is that unobserved variables must adjust themselves through the
model dynamics.

Optimal interpolation (Gandin, 1965; Daley, 1991) updates unobserved variables through
physical assumptions and error statistics. Optimal interpolation methods are often
tailored to a specific data type. Altimetry and sea surface temperature are the main
observations used to correct general circulation models because remote sensing missions
provide these variables with high spatial and temporal coverage. A central question in
data assimilation is therefore how these surface observations can be connected to the
unobserved variables at depth. For altimetry assimilation, the Cooper and Haines (1996)
scheme displaces the complete water column such that the resulting dynamical height
(based on a reference level with no pressure change) is in accordance with the remote
sensed altimetry. This scheme has been applied to the global ocean (e.g. Fox et al.,
2000b; Haines, 2002) and works well for stratified regions. For weakly stratified seas the
displacement of the Cooper and Haines (1996) scheme can become be too large.

The SOFA scheme (System for Ocean Forecasting and Analysis, De Mey and Benkiran,
2002) is based on an empirical orthogonal function analysis of the vertical temperature,
salinity and surface elevation variability. These EOFs represent the covariance between
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these variables and they are used to project the surface information to the depth. The
SOFA scheme is more flexible than the Cooper and Haines (1996) scheme since it can
take different regional and seasonal situations into account and it is not limited to
altimetry observations.

These two optimal interpolation methods, or variants of these schemes, are often used
in operational ocean models because they are numerically inexpensive and robust. The
FOAM system (Forecasting Ocean Assimilation Model, Bell et al., 2000; Bell, 2003) and
the HYCOM/MICOM (Miami Isopycnic Coordinate Ocean Model/HYbrid Coordinate
Ocean Model, Bleck, 2002) operational model are based on the Cooper and Haines (1996)
scheme. The V1 and V2 classes of the MERCATOR models (Bahurel et al., 2001, 2004),
and the Mediterranean Forecasting System (Pinardi et al., 2003; Demirov et al., 2003)
use the SOFA scheme.

For Kalman filter methods, the model itself (or the linearised model) is used to derive
the relationship between the variables, the so-called error covariance. The forecast of this
covariance is by far the most expensive step of the Kalman filter. A large number of
simplified Kalman filters applicable to ocean models have been proposed to reduce the
computational cost of this error covariance forecast.

A considerable simplification of the error covariance forecast can be done by variance-only
error models (Daley, 1991, 1992). Only the model error covariance is propagated by the
model dynamics. The correlation between the model variables is assumed constant and
still need to be specified based on physical and statistical assumptions.

Instead of using the model with complete physics, the error forecast can be done with
a model based on simplified physics. This approach reduces the cost associated to the
error forecast of the Kalman filter (Dee et al., 1985; Dee, 1990; Daley, 1992). However, it
is not obvious if the simplified model reproduces the same error grow than the complete
model.

The model can also be simplified by reducing the horizontal resolution of the model. The
error covariance is thus computed on a coarser grid (Fukumori and Malanotte-Rizzoli,
1995; Cohn and Todling, 1996). Small scale errors not represented on this coarse grid are
thus not corrected by this method. Miller and Cane (1989) applied a similar approach
by using a low-order spectral model for the error forecast.

A consequent simplification of the original Kalman filter is the use of a steady-state error
model (Fukumori et al., 1993) and an asymptotically constant Kalman gain matrix. In
fact, under some assumptions, the model error covariance and thus the Kalman gain
converge to a constant matrix.

Other reductions deal with the explicit computation of non-null elements of matrices
representing the linearised model (Parrish and Cohn, 1985; Jiang and Ghil, 1993).
These studies have been carried out with a linear shallow water model. The explicit
computation of the transfer matrix is only feasible with small models.
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The linearised model can also be approximated by its projection on a given subspace.
This subspace can either be the dominant eigenvectors of the linearised model (Cohn
and Parrish, 1991; Cohn and Todling, 1996) or any other set of basis functions such as
the EOFs of the model time variability (Cane et al., 1996).

Another category of simplified Kalman filters works with the full model but approx-
imates the error covariance matrix. An early attempt of Parrish and Cohn (1985)
approximated the error covariance matrix by a banded matrix. This choice is mo-
tivated by the narrow stencils of ocean models. However, the positive definiteness
of the error covariance is no longer guaranteed. The assimilation using a covariance
matrix with (false) negative eigenvalues takes the model state away from the observations.

The representation of the error covariance matrix in terms of its leading eigenvectors
and eigenvalues (Cohn and Todling, 1996) is the basis of the SEEK filter (Singular
Evolutive Extended Kalman filter, Pham et al., 1998; Brasseur et al., 1999), the
RRSQRT filter (Reduced Rank Square Root filter, Verlaan and Heemink, 1997) and
the ESSE method (Error Subspace Statistical Estimation, Lermusiaux, 1997). The
formulation of the error covariance in terms of its leading eigenvectors is the most
accurate reduced rank representation of this error covariance matrix (Horn and Johnson,
1985, 1991). However, this approximated error covariance systematically underestimates
the total error variance since a part of the error variance is lost in the truncation of the
eigenvector decomposition (Heemink et al., 2001). As in the Extended Kalman filter,
the eigenvectors of the error covariance matrix are propagated by the tangent linear model.

The model forecast uncertainty can also be represented by an ensemble of likely model
states (Miller et al., 1994; Evensen, 1994, 2003). In the ensemble Kalman filter (EnKF),
the model error covariance is obtained by a stochastic ensemble run. This Monte Carlo
approach allows us to make a direct link between the error sources and the resulting
imperfections of the model forecast. However, as in any Monte Carlo approach, the
convergence is slow and high ensemble sizes are needed. It is also possible to use optimal
and breed perturbations for assimilation to improve the convergence (Ehrendorfer and
Errico, 1995; Toth and Kalnay, 1993).

The comparisons between the ensemble Kalman filter and Kalman filters based on
an eigenvector decomposition of the error covariance have lead to interesting methods
combining both approaches. Pham (2001) showed that an ensemble can also be built
by the eigenvectors of the covariance matrix. The resulting ensemble represents more
accurately the error covariance than the ensemble of the same size obtained by random
perturbations. The error forecast of the so-called SEIK filter (Singular Evolutive
Interpolated Kalman filter), a variant of the SEEK filter, is based on an ensemble and
it can thus be carried out with the full nonlinear model instead of the tangent linear model.

Heemink et al. (2001) proposed two modifications of the RRSQRT filter, the POEnKF
(Partially Orthogonal Ensemble Kalman Filter) and the COFFEE algorithm (Com-
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plementary orthogonal subspace filter for efficient ensembles). The error space of the
POEnKF is composed by the leading eigenvectors of the error covariance matrix and by
randomly chosen ensemble members. They are propagated by the tangent linear model
and the full nonlinear model respectively. During the analysis, the error directions of
the ensemble already accounted by the leading eigenvectors are rejected. The COFFEE
algorithm is similar except that the ensemble of states is directly sampled in the space
perpendicular to the leading eigenvectors.

Due to the sequential design of the Kalman filter algorithm, all these Kalman filter
techniques take only into account past observations. The Kalman smoother (e.g. Gelb,
1974) is an extension of the Kalman filter since it provides the best estimate using
past and future observations of a hindcast experiment. The ensemble smoother (van
Leeuwen and Evensen, 1996) estimates the time-space covariance by an ensemble of
model trajectories. The time dimension is thus fully integrated in the estimation state
vector. The ensemble Kalman smoother (Evensen and van Leeuwen, 2000) uses the
EnKF as a first guess. At the analysis, the information of the current observations
is propagated backward in time. An approximated smoother based on the classical
Rauch-Tung-Striebel algorithm (e.g. Gelb, 1974) is the partitioned Kalman smoother
(Fukumori, 2002). The model state is divided into several partition elements. The
smoothing problem is then solved on each partition independently. The partitioning can
be, for example, the decomposition into different regional sub-domains or the splitting of
the baroclinic and barotropic modes (Fukumori et al., 1999).

Variational assimilation methods are derived in the frame of optimal control. A set of
unknown input parameters, the control variables, are adjusted in such a way that the
model output comes as close as possible to the observations. In 3D-Var (e.g. Courtier
et al., 1998; Lorenc et al., 2000), the model input is the model state and the model output
is the model counterpart of the observations at the same instant. 3D-Var does not involve
therefore the model dynamics and necessitates the adjoint1 of the observational model
relating the model state and the observations. It is a sequential assimilation method and
it leads to the same result than optimal interpolation if the observational model is linear.

The variables to optimise can also be the uncertain initial conditions, the external
forcings or model parameters as in the 4D-Var method (Dimet and Talagrand, 1986;
Talagrand and Courtier, 1987). Here, the adjoint of the model dynamics must be derived.
4D-Var is able to take all observations into account, not only the past observations as
the sequential methods. The main drawback of the 4D-Var method is the fact that
all error sources must be control variables of the optimisation process. Therefore, it is
not feasible to take the error introduced at each time step into account (Vidard et al.,
2003). The model itself is thus assumed to be perfect. This approach has been applied
in oceanography to various physical and biological problems (Fennel et al., 2001; Wenzel
et al., 2001; Spitz et al., 2001; Stammer et al., 2002). The representer method (Bennett,
1992; Chua and Bennett, 2001) is related to 4D-Var approach and has not this limitation

1The adjoint of a model can be defined as the transpose of its tangent linear model.



16 Chapter 1. Introduction

but it is derived in a linear frame. The 4D-Var method, the Kalman smoother and
the representer method result in the same solution for linear models under the same
hypotheses.

In this work, data assimilation is applied to a system of nested models. Model nesting
consists in refining locally the regular model grid by a constant integer factor. It allows
achieving a higher resolution locally in a domain of interest without carrying the high res-
olution over the entire domain. For telescopically nested models, the grid is successively
refined several times and the resolution can thus be increased gradually. This reduces
the problem at the interface between the grids due to an abrupt change in resolution.
Traditionally (e.g. Fox and Maskell, 1995) two types of nesting are distinguished: (i)
one-way or passive nesting (e.g. Robinson and Sellschopp, 2002; Zavatarelli and Pinardi,
2003; Garnier et al., 2004) and (ii) two-way or interactive nesting (e.g. Oey and Chen,
1992; Fox and Maskell, 1996; Ginis et al., 1998; Blayo and Debreu, 1999; Barth et al.,
2003). In one-way and two-way nesting the boundary conditions for the high resolution
grid are interpolated from the coarse model values. The high resolution model depends
therefore on the dynamics of the coarse resolution model. In one-way nesting, the
coarse resolution model is not influenced by the high resolution model. This has the
advantage that the models can be run successively, starting with the coarse resolution
model. However, after long-term integration, both models may become inconsistent. The
two-way nesting avoids this problem. After the boundary conditions are imposed on the
fine model grid and both models are integrated one step forward, the values of the coarse
model grid in the overlapping domain are replaced by the average value of the fine model
grid. The underlying idea of this feedback is that the forecast of the fine model grid is
more accurate than the result of the coarse model grid. The two-way nesting approaches
differ in the way how the boundary conditions are interpolated, how the feedback is
computed and by some possible special treatments at the boundaries.

Model nesting was first applied by Spall and Robinson (1989). This technique is now
extensively used in operational oceanography (e.g. Robinson and Sellschopp, 2002;
Zavatarelli and Pinardi, 2003) since it responds to the end-user demand of high resolution
forecasts of e.g. regions critical for human activity.

The present work deals with data assimilation in combination with a nested model. In
the case of one-way nested models, the fine resolution model is generally run after the
coarse resolution model. Therefore the observations are generally assimilated into each
model independently as it has been done for example in the FOAM system (e.g. Bell
et al., 2000; Martin et al., 2002) or in ADRICOSM system (e.g. Pinardi et al., 2004;
Zavatarelli and Pinardi, 2003). Also in two-way nested models, each model has been
treated separately for the assimilation of observations (e.g. Onken et al., 2003).

A novel approach that consists in adopting a state vector spanning all nested models is
applied in this work. This approach allows to take into account the correlation between the
different models and to keep a perfect consistency between the models after assimilation.
Also some implementation issues encountered when the assimilation is applied to nested
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are discussed.

1.1 Observations

In this section we will introduce the two types of observations used in the assimilation
experiments: sea surface temperature and sea surface height. Since there are several ways
to define these variables, it is useful to recall these definitions. It is also important to take
the measurement procedure and the resolved scales into account to know how the model
variables can be related to the observations.

1.1.1 Sea surface temperature

The temperature structure of the upper ocean is quite complex and depends on various
processes acting at the surface and on the first meters of the water column. The air-sea
interface is affected by processes responsible for the heat transfer between the ocean and
the atmosphere: the net longwave radiation, the heat convection between the air and the
sea and the heating or cooling due to moisture transfer. Within the ocean, the heat is
redistributed by molecular diffusivity and turbulent diffusivity. The heating related to
the light absorption is another process modifying the temperature of the water column.
All these processes acting at different depths and depth ranges complicate the definition
of the SST and the intercomparison with different instruments and models. According
to Donlon (2002) the temperature at different depths can be defined depending on the
dominant processes.

The interface SST, SSTint, is the temperature at exactly the interface between the
atmosphere and the ocean. This temperature governs the surface heat transfers
between the ocean and the atmosphere. However, this temperature cannot be mea-
sured directly by current technology.

The skin SST, SSTskin, is the temperature of the thin surface layer where the molecular
diffusion and heat conductivity dominate. The thickness of the layer influenced by
these skin effects and solar heating is less than 500 µm. The temperature gradient
within this layer is given by the atmospheric heat fluxes. The skin temperature is
measured by radiometers operating in the spectral region of 3.7 to 12 µm (thermal
infrared). The Advanced Very High Resolution Radiometer (AVHRR) and Along-
Track Scanning Radiometer (ATSR) are sensors measuring in the thermal infrared
(Wick, 2002). The signal of these sensors penetrates approximately 10 µm into the
water column.

The sub-skin SST, SSTsub-skin, represents the temperature at the base of the skin layer.
Beyond the skin layer, the temperature is affected by turbulent mixing and insola-
tion. Sensors working with microwave measure the sub-skin SST. For example, the
Scanning Multichannel Microwave Radiometer (SMMR) and the Tropical Rainfall
Measuring Mission (TRMM) Microwave Imager (TMI) measure in this frequency
band (Wick, 2002). The depth of the sub-skin SST is of the order of 1 mm.
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The bulk SST or SSTdepth, is the temperature of the water column under the skin
layer at a depth completely immersed in the turbulent ocean. This temperature
is observed by in situ buoys, CTD and XBT measurements.

The constant temperature layer SST, SSTCTL, is the sea temperature at a depth
where the temperature is not significantly affected by the solar radiation. The
diurnal variations are less than 0.2 ◦C. The effective position of this constant
temperature layer can therefore vary from one location to another.

SST of hydrodynamic models resolving the insolation diurnal cycle corresponds to the
bulk SST. Since the diurnal cycle has little impact on large time and space scales, models
representing large scales are forced by daily averaged atmospheric forcings. In this case,
the model SST is related to the constant temperature layer SST.

Figure 1.1 shows the approximate depths of each of these SST definitions. Since the
solar radiation is an important process, the night heat distribution in the upper ocean
is different from the day temperature profile. Due to this time and space variation, the
SST should be given as a temperature measurement at a specified depth and ideally at a
specified time of day.

1.1.2 Altimetry

Altimetry measurements are realised by a radar onboard of a satellite sending a high
frequent signal (more than 1700 pulses per second) towards the ocean surface. These
pulses are reflected by the ocean surface. The satellite measures the time between the
emission of the pulse and the reception of the echo (figure 1.2). The distance between the
satellite and the ocean surface is determined by this time delay and the speed of the light
in the atmosphere. The air density and the content of water vapour in the troposphere
and the density of free electrons in the ionosphere affect the speed of the signal and are
taken into account.

The altitude of the satellites is known from the ellipsoid of reference. The sea surface
height (SSH) is defined by the height of the ocean surface computed from this ellipsoid of
reference. Thus, the SSH is obtained from the difference between the distance separating
the ocean surface and satellite and the altitude of the satellite. The satellite provides us
the SSH along the ground track of the satellite. The orbit of the satellite is chosen in
such a way that the ground tracks of the satellite are repeated. For example, the repeat
cycle of the Topex/Poseidon and the Jason-1 satellites is 9.91 days.

Besides the already mentioned tropospheric and ionospheric effects other corrections
are applied to the altimetric signal. These corrections include the electromagnetic bias
function of the sea state and the solid earth tides. Other corrections are carried out to
eliminate the signal of high frequent ocean processes that are only weakly coupled to the
ocean meso- and large scale dynamics.
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Figure 1.1: The difference between the pre-dawn temperature at 1-5 m depths and the
temperature at various depths during night (a) and during day (b). Adapted from Donlon
(2002)

Figure 1.2: Schematic view of altimetry remote sensing and the relationship between
ellipsoid of reference, geoid, SSH and dynamic topography (from http://www.jason.

oceanobs.com/.

 http://www.jason.oceanobs.com/
 http://www.jason.oceanobs.com/
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Like any membrane of a barometer is deformed by the atmospheric pressure, also the
ocean surface is lowered or raised due to the load of the atmospheric air column. This
phenomenon is called the inverse barometer effect. The resulting change of the sea level
is directly related to the atmospheric pressure. This signal can be easily removed in
order to isolate signal of meso- and large scale ocean processes. Often ocean models
do not take into account the atmospheric pressure at the surface. This choice is due
to the fact that the atmospheric pressure is compensated by the change of the surface
elevation and the pressure at depth is not modified. Furthermore, regional models would
require a boundary condition resolving the barotropic response of the ocean due to the
atmospheric pressure.

The largest dynamical variation of the ocean surface is due to tides. Tides in the open
ocean have amplitudes of the order of up to 50 cm with considerable geographic variation.
These tides are removed in order investigate the signal at larger time scales. Tidal models
such as the model of Cartwright and Ray (1990) and of Le Provost et al. (1998) are used
for this purpose. Near the coast the tidal signal is sometimes not completely removed
due to the coarse resolution of the tidal models. The error associated to the altimetry
with tidal correction is therefore higher near the coast.

The SSH obtained after the application of the mentioned correction, is further divided
into two very distinct contributions: first, the SSH to which the ocean at rest would
conform and the second part of the signal is consequently the SSH due to the ocean
circulation.

The former component of the SSH signal is called the geoid. The geoid is a gravitational
equipotential surface and the gravity force is always perpendicular to it. The structure of
the geoid is due to the mass distribution in the Earth. The geoid amplitudes are of the
order of 100 m (Lemoine et al., 1998). Estimations of the geoid exist but the structures
at small scale are relatively unknown. The typical accuracy is of 10 to 20 cm RMS for a
spherical harmonic development of the order of 20, i.e. wavelengths larger than 2000 km
(Le Traon et al., 2001).

The deviation of the SSH from the geoid is called the dynamic topography. It is affected
by a series of dynamic ocean processes such as surface gravity waves, Rossby and Kelvin
waves, frontal systems, eddies and currents. A broad range of ocean phenomena can
therefore be detected by altimetry. The fraction of the oceanic signal is of the order of
10 cm and much smaller than the spatial variation of the geoid.

Ocean circulation models do not take of course the inhomogeneous mass distribution
of the Earth into account. With a constant gravitational field, the model geoid is the
surface with a depth equal to zero. Indeed, this surface corresponds also in the model
to an ocean at rest without forcings. The model elevation represents therefore only the
dynamic topography.

In principle, it would be sufficient to subtract the geoid from the SSH, to obtain the
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dynamic topography. But due to the low precision of the geoid another approach
is generally adopted. Sea level anomalies are computed by subtracting a time mean
from the SSH measurements. A mean dynamic topography (MDT) can be determined
by averaging the model results of the corresponding time period. Several alternative
ways for determining the MDT exist and they are based on the Levitus climatology
(Levitus and Boyer, 1994; Levitus et al., 1994), in situ measurements of the dynamic
topography (Uchida et al., 1998) or from drifters (Rio and Hernandez, 2004). In order
to avoid the geoid problem, the altimetry measurements are referenced from the MDT.
The sea surface anomalies therefore do not contain the signal of permanent ocean currents.

1.2 Basic concepts

1.2.1 The state vector and the model

The state vector regroups all variables necessary to describe the state of the system.
Typically all prognostic variables at all model’s grid points can be found in the state
vector. The model allows us to forecast the state vector at a future time ti+1, if the state
vector is known at a time ti. Formally, the model is in this view a function mapping the
state vector xi at time ti to the state vector xi+1 at time ti+1.

xi+1 = Mi(xi) (1.1)

Even if the time lag ti+1−ti involves a large number of model time steps on the discretised
time axis, the model equations can always be formulated by equation (1.1). The function
Mi already includes the boundary conditions. In some notations, they are expressed as
an additional term of equation (1.1).

Some difficulties arise when the numerical scheme of the model involves different time
instants. The “leapfrog” scheme is for example based on two successive past time steps.
To strictly maintain the formalism, the state vector should be composed of all prognostic
variables at two model time steps. In practice, however, this approach is not very
interesting. It is preferable to start the model with a first order time scheme and then to
continue with the second order leapfrog scheme. This last approach was used for example
by Testut et al. (2003).

For various reasons discussed later, the model forecast xi differs in general from the true
model state xt

i by an unknown error ζi.

ζi = xt
i − xi (1.2)

By comparing the model to the observations and climatology, we can assess the skill of
the model and evaluate a typical magnitude of this error. Data assimilation methods can
only be applied if we know what a probable error is and what not. In the most general
form, we can conceptualise the model error by a random vector following a probability
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density function, or pdf, pεi
.

Most assimilation schemes assume that the error is Gaussian distributed and has zero
mean. This implies that our model is unbiased. The pdf is then completely characterised
by the error covariance matrix Pi.

Pi = E
[
ζiζ

T
i

]
(1.3)

where E is the expectation operator. Like all covariance matrices, Pi is symmetric and
positive definite.

Example

Let’s consider the case of an ocean system governed by the primitive equations with a
free surface. If data assimilation is used in order to provide the best estimation of the
ocean state (data assimilation can also be implemented for parameter optimisation), the
state vector would contain the surface elevation, the horizontal velocity, temperature,
salinity, and the parameters of the turbulence closure scheme involved in a transport
equation. The state vector is composed of all these variables at all grid points corre-
sponding to a sea point. The number of elements in the state vector n is therefore
of the order of 105 to 107. With the increasing computing capacity, the resolution of
the numerical models is constantly enhanced and thus the size of the state vector increases.

The dimension of the state vector is a critical parameter in data assimilation. Assimilation
schemes such as the Kalman filter (Kalman, 1960) are known for a long time but the
important size of the state vector makes the direct implementation unpractical. The
Kalman filter, for example, requires the storage of n2 numbers and at least n2 floating-
point operations or n model integrations instead of one model integration for a simulation
without the Kalman filter.

State vector augmentation

In some implementations, diagnostic variables are also added to the state vector. For
example, the surface elevation of a rigid lid model can be part of the state vector in
order to simplify the assimilation of SSH. Other variables related to the dynamics of the
system such as atmospheric forcing or even scalar parameters of the model can also be
present in the state vector if they have to be optimised by assimilation.

For each added variable and parameter, equation (1.1) must be extended by an evolution
equation. For parameter optimisation, the “dynamical” evolution of vector holding the
parameters pi can simply be the persistence (Kivman, 2003):

pi+1 = pi (1.4)

According to the model dynamics, the parameters are supposed to be constant and valid
for all situations encountered along the model evolution. The Kalman filter intents to
provide the best estimation of the parameters taking into account all past observations.
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In such a sequential assimilation algorithm, the parameter will change with time the
more and more observations are available as the model runs forwards. If the hypotheses
of the Kalman filter are verified, the parameter will tend to the optimal value taking into
account all observations. This optimised value can be used for a new model integration.
Non-sequential algorithms such as 4D-Var and Kalman smoother naturally provide the
best parameter values of the complete time interval.

As Kivman (2003) has pointed out, even if the initial model is linear, the augmented
model can be nonlinear. For instance, parameters in biological models and in turbulence
closure schemes have in general a highly nonlinear impact on the model result since
they can change completely the dynamical regime of the system. Therefore, parameter
optimisations are very challenging problems in data assimilation (Fennel et al., 2001;
Wenzel et al., 2001; Spitz et al., 2001).

Furthermore, the model parameters cannot take arbitrary values. For example, most
parameters must be positive. Consequently, any probability distribution expressing
uncertainties in the parameter space is essentially non-Gaussian.

This technique is called state vector augmentation. These examples for state vector
augmentation described here should illustrate that the concept of the state vector is very
flexible and depends on the data assimilation problem. With state vector augmentation
the problem is rewritten in order that its formal expression is simpler. But it is just
a rearrangement of the unknowns of the problem to solve. For example, a parameter
optimising 4D-Var scheme with state vector augmentation would yield exactly the same
practical problem as the formulation based on separated system state vector and the
parameters.

1.2.2 The observations and observational model

Observations are relevant to the studied system if they can be related to the true state of
a system by:

yo
i = Hi(x

t
i) + εi (1.5)

where the observational model Hi makes the link between model and observations.
Often this function simply performs an interpolation to extract the model result at
the observation locations (figure 1.3). In other cases, Hi can be a complex function
computing the sea surface height of a rigid lid model or the brightness temperature from
sea surface temperature and salinity. The error term εi takes the instrumental error into
account and the fact that some processes are not resolved by the model. The latter error
is called the representativeness error or the error of unresolved scales.

An example of the representativeness error is the difference between the skin temperature
measured by satellites and the model surface temperature. The model surface layer
resolution is generally of the order of one meter and does not resolve the skin layer,
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Figure 1.3: The operator Hi(·) interpolates the model results to the grid of the observa-
tions. This figure shows schematically the position of altimetry measurements (crosses)
and the elevation grid-points of the model (dots). In the simplest form, Hi(·) performs
a bilinear interpolation. The model results and the measurements, however, do not rep-
resent the elevation of a single point but a mean over a certain range. This can also be
taken into account in the measurement operator.

whose depth is less than 500 µm.

The representativeness error is generally much larger than the instrumental error. This
part of the signal in the observations should not be injected into the model since the
model is not able to handle this information correctly. However, one should bear in mind
that this error part does not correspond to a problem in the observations but it rather
represents an inadequacy of the dynamical or the observational model.

The error term εi is treated as a random vector following the probability distribution pεi
.

In many assimilation schemes, the errors are supposed to be unbiased and the mean of
the random vector εi is zero. A Gaussian distribution is widely used to model this pdf:

pεi
(ε) = (2π)−m/2(detRi)

−1/2 exp

(
−1

2
εTR−1

i ε

)
(1.6)

where Ri is the error covariance of the observations. Van Leeuwen (2003) suggested that
the pdf might decrease too rapidly and does not take “outlier” observations into account.
In certain circumstances, a Lorenz pdf might be more appropriate. For all assimilation
methods presented here, the observational error is assumed to be uncorrelated in time
and uncorrelated to the errors affecting the model.
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The GHER model

2.1 Primitive equations

The GHER (GeoHydrodynamics and Environment Research) model (Beckers, 1991) is
used for the present telescopically nesting implementation. The free surface, hydrostatic,
primitive equations under the classical Boussinesq and beta-plane approximations are
solved. The equations are expressed in a Cartesian coordinate system where x, y and z
are the longitude (positive to the East), latitude (positive to the North) and the height
(zero at surface and negative in the water).

∇ · v = 0 (2.1)

∂u

∂t
+ v · ∇u + fez ∧ u = −∇hq +

∂

∂z

(
ν̃
∂u

∂z

)
(2.2)

∂T

∂t
+ v · ∇T =

∂

∂z

(
λ̃

∂T

∂z

)
+

1

cpρ0

∂I

∂z
(2.3)

∂S

∂t
+ v · ∇S =

∂

∂z

(
λ̃

∂S

∂z

)
(2.4)

∂k

∂t
+ v · ∇k = ν̃

∥∥∥∥∂u

∂z

∥∥∥∥2

− λ̃
∂b

∂z
− ε +

∂

∂z

(
ν̃
∂k

∂z

)
(2.5)

where f is the Coriolis frequency, q the generalised pressure, b the buoyancy, T the
temperature, cp the heat capacity of sea water, ρ0 the reference density, S the salinity, ν̃
and λ̃ are the eddy viscosity and diffusivity, k the turbulent kinetic energy and ε is the
dissipation of turbulent kinetic energy. The velocity v is decomposed into its horizontal
u and vertical w component:

v = u + wez (2.6)

The operators ∇ and ∇h are defined as:

25
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∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
(2.7)

∇h = ex
∂

∂x
+ ey

∂

∂y
(2.8)

(2.9)

If one subtracts from the pressure p the hydrostatic pressure due to a constant density
ρ0, one obtains the generalised pressure (apart from a constant factor ρ0):

q =
p

ρ0

+ gz (2.10)

where g is gravitational acceleration. The buoyancy b is given by the state equation
ρ(T, S):

b = −ρ(T, S)− ρ0

ρ0

(2.11)

Under the hydrostatic approximation, the generalised pressure and the buoyancy are
related by:

∂q

∂z
= b (2.12)

The vertical turbulence is parameterised by a k turbulent kinetic energy closure scheme
(Nihoul et al., 1989). The evolution equation for the dissipation of turbulent kinetic
energy ε is replaced by an algebraic relationship. The turbulence closure scheme is based
on the Brunt-Väisälä or stability frequency N , the Prandtl frequency M , the Richardson
number Ri and the Richardson flux number Rf defined by:

N2 =
∂b

∂z
(2.13)

M2 =

∥∥∥∥∂u

∂z

∥∥∥∥2

(2.14)

R̃i =
γ

2

N2

M2
(2.15)

Rf =
λ̃bN2

ν̃M2
(2.16)

The dissipation of turbulent kinetic energy ε, the turbulent viscosity ν̃, the turbulent
diffusivity λ̃ and the mixing length lm are parameterised by:

ε = αk
k2

16
(2.17)

ν̃ =
1

2
α

1/4
k k1/2lm (2.18)

lm = (1−Rf ) ln(z) (2.19)

λ̃ = Ψbν̃ (2.20)

Ψb = γ
√

1−Rf (2.21)

The parameters αk and γ are dimensionless empirical quantities of the order of 1
and 1.1 − 1.4 respectively. The length ln(z) represents the mixing length at neutral



2.2. Discretisation 27

stratification. It is assumed to depend only on geometry of the basin (Beckers, 1991).

From (2.16), (2.15), (2.20) and (2.21), one can show that the Richardson number Ri and
the Richardson flux number Rf are related by the following expression:

1−Rf =

(
R̃i +

√
R̃2

i + 1

)−2

(2.22)

2.2 Discretisation

The domain is discretised horizontally along parallels and meridional lines. In the
vertical, the model uses a double-sigma coordinate (Beckers, 1991). This coordinate
transform is a particular feature of the GHER model and it is based on the observation
that the most abrupt change in the bathymetry is generally located at the shelf break. It
divides the model domain in an upper and a lower region at a given depth hl (figure 2.1).
In each region, a traditional sigma transform is then performed. The depth hl is related
to the mean depth of the shelf break. Unlike a normal sigma coordinate (Haney, 1991),
the double σ coordinate can represent an abrupt shelf break if it is located at the depth hl.

Scalar variables (elevation, temperature, salinity and turbulent kinetic energy) are discre-
tised at the centre of each grid box and at the interface of each box we define the normal
velocity component (a C-grid in Arakawa nomenclature). For computational efficiency,
the baroclinic mode is integrated with a much larger time step than the barotropic mode.
All models of the nesting system are integrated with the same time step, i.e. 4 s for
the barotropic mode and 80 s for the baroclinic mode. The numerical scheme conserves
volume, heat and salt. In addition, the advection scheme is a monotone TVD (Total Vari-
ation Diminishing) scheme preserving fronts and gradients. Other details of the GHER
model can be found in Beckers et al. (2002).

2.3 Atmospheric fluxes

2.3.1 The momentum flux

The winds at the air-sea interface drag the surface water along its direction. This wind
stress τ gives the momentum flux between ocean and atmosphere and it is parameterised
by:

τ = CDρa‖ua‖ua (2.23)

ρa is the air density and ua the wind vector at the reference level. The drag coefficient
CD is parameterised by the scheme of Kondo (1975). The momentum flux is a vector
with the same direction of the wind vector. Therefore, a positive momentum flux is a
momentum transfer from the atmosphere to the ocean (figure 2.2).
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Figure 2.1: The double-sigma coordinate of the GHER model. ζ and h are the surface
elevation and the ocean floor depth computed from the reference surface z = 0 respectively.
hl corresponds to the average depth of the shelf break. The physical domain (left) is
transformed into the modelling domain (right) with the coordinate ẑ.
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Figure 2.2: Sign convention for the atmospheric fluxes. The heat fluxes (shortwave radia-
tion, net longwave radiation, latent and sensible heat flux) are positive if heat is transferred
from the ocean to the atmosphere. For the momentum flux the opposite convention is
adopted such that the momentum flux vector has the same direction than the wind vector.
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2.3.2 Heat flux

The original GHER model was forced by a non-interactive total surface heat flux, a
momentum flux and a surface fresh water flux. The total surface heat flux is the sum
of the latent heat flux, the sensible heat flux, the net shortwave (or solar) radiation and
the net longwave (or back) radiation. A relaxation toward the climatologic sea surface
temperature and salinity introduces an interactive correction on the surface heat flux
and the fresh water flux. The atmospheric heat forcings have a great impact on the SST
forecast skill. The model was substantially improved by refining the implementation of
the atmospheric fluxes, as explained in the following sections.

2.3.3 The surface shortwave radiation

We compared the 1D vertical GHER model based on the same k-turbulence param-
eterisation as the 3D model with the results of the GOTM model (Burchard, 2002).
The GOTM model is an advanced turbulence model and in several studies, it has been
validated against observations (e.g. Burchard et al., 2002). It uses a k-ε turbulence
scheme and treats the shortwave radiation as a volume heat source.

Without the temperature relaxation the sea surface temperature of the 1D GHER model
reaches unrealistic high temperatures in summer (figure 2.3). The enhanced stratifi-
cation prevents the mixing with the lower water layer and the surface heating is reinforced.

In fact, by implementing the solar radiation in GHER model also as a volume heat source
the vertical structure of the temperature was significantly improved and the results were
much closer to the results of the GOTM model but differences remain.

If we want to distribute the solar energy into the water column we have to make as-
sumptions about the light absorption. By considering only two visible frequencies, the
radiation flux as a function of depth is given by the following equation (z = 0 at the
surface and negative in water):

I(z) = |Qs| (A eg1z + (1− A) eg2z) (2.24)

where Qs is the light intensity at the surface, A = 0.58 is the fraction long-wave
solar energy and g1 = 0.35 m−1 and g2 = 23.0 m−1 are the absorption coefficients of
the short-wave and long-wave solar energy respectively. This distribution of the light
intensity corresponds to the water of type I according to the classification of Jerlov (1968)
and is the same used in the GOTM model. Also the absorption profile proposed by
Ivanoff (1977) was tested. Lacroix and Grégoire (2002) use this absorption formulation
for the 1D GHER in the Ligurian Sea. But the differences between both absorption
profiles and the resulting temperature distribution are small.

The insolation represents the main energy input into the ocean. Solar energy Qs

entering into the water arrives at the sea surface either directly or by diffusion. The
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Figure 2.3: Temperature profiles in a point of the Ligurian Sea with 42◦50’ N latitude
and 7◦30’ W longitude. The day 0 is the 1 January 1998. The panel (a) shows the
temperature of the GOTM model, (b) the temperature of the 1D-GHER model with the
shortwave radiation as a surface flux (colour bar is saturated since the temperature reaches
unrealistic values) and (c) the temperature of the 1D-GHER model with the shortwave
radiation as a volume source.
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two components are noted Qdir and Qdiff respectively. The radiance at the top of
the atmosphere Q0 is based on the solar constant and the zenith angle of the sun z.
According to our convention Q0 is negative (figure 2.2).

The width of the air mass crossed by the light is proportional to sec(z). If the fraction
of energy transmitted by the atmosphere at normal incidence is τ , then the fraction of
energy reaching the ocean surface for the sun at z is τ sec(z). The half of the energy which is
not directly transmitted Qdir nor absorbed due to ozone AaQ0, reaches the ocean surface
by diffusion (Rosati and Miyakoda, 1988).

Qdir = Q0τ
sec(z) (2.25)

Qdiff =
1

2
((1− Aa)Q0 −Qdir) (2.26)

Qs = (1− 0.62C + 0.0018β)(1− α)(Qdir + Qdiff) (2.27)

where the empirical relation of Reed (1977) has been used for taking into account the
fractional cloud coverage C, the ocean surface albedo α and the solar noon altitude β (in
degrees).

2.3.4 Net longwave radiation Qb

The net longwave radiation is the sum of upward longwave radiation of the ocean and the
downward longwave radiation of the atmosphere (Barnier et al., 1995). The upward and
downward radiation are proportional to the forth power of the sea surface temperature
Ts and air temperature. Not only the air at the surface but also the whole atmosphere
emits longwave energy. The upward radiation is in general greater than the downward
radiation. The net longwave radiation, also called “back radiation” represents thus a heat
loss for the ocean. The back radiation Qb is parameterised by the scheme of Clark et al.
(1974):

Qb = εσT 4
s (1− 0.8C2)(0.39− 0.05

√
ea) + 4εσT 3

s (Ts − Ta) (2.28)

where ε is the emissivity of the ocean, σ the Stefan-Boltzman constant, ea the atmospheric
vapour pressure in hPa and Ta is the air temperature at reference level. The first term of
this parameterisation takes also the greenhouse effect due to cloud and water vapour into
account (Ronday, 2000)

2.3.5 Latent QL and sensible heat flux QH

The latent heat flux is due to a difference in the water vapour content of the air at
the ocean surface and at the reference level. This gradient induces an evaporation or
condensation. To this mass transfer corresponds a heat exchange, which is equal to the
rate of vaporisation times the latent heat of evaporation L (Ronday, 2000; Zaker, 2003).

The sensible heat flux is due to the temperature difference between the air at the ocean
surface and the air at the reference level. The sensible heat is the heat exchanged
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by conduction and is proportional to this temperature gradient, the heat conduc-
tivity of the ocean surface and the specific heat of air at constant pressure. For the
air temperature at the ocean surface, the sea surface is taken assuming a local equilibrium.

The latent heat flux and the sensible heat flux are parameterised by classical bulk turbu-
lent transfer formulas (Rosati and Miyakoda, 1988; Castellari et al., 1998):

QL = CLLρa‖ua‖(qs − qa) (2.29)

QH = CHcpaρa‖ua‖(Ts − Ta) (2.30)

where ρa is the air density, ua is the wind vector, qs is the specific humidity of saturated
air at Ts, qa is specific humidity of air and cpa the heat capacity of air at constant pressure.
For an air pressure pa expressed in hPa, qa is obtained by the air temperature Ta and the
relative humidity r and qs is obtained from the sea surface temperature Ts by:

qa = resat(Ta)
0.622

pa

(2.31)

qs = esat(Ts)
0.622

pa

(2.32)

Expressions (2.29) and (2.30) are well established bulk parameterisations for the latent
and sensible heat flux. Matter of discussions are however the exchange coefficient CH

(Stanton number) and CE (Dalton Number). Numerous parameterisations are proposed
in the literature and their impact on the Mediterranean Sea heat budget is discussed by
Castellari et al. (1998). The GOTM meteorological forcings routines implemented into
the GHER model use the schemes of Kondo (1975) for the turbulent coefficients.
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Nesting

3.1 Introduction

A system of nested models is applied to the Mediterranean Sea with two successive
zooms of the Liguro-Provençal basin and of the Ligurian Sea. Two strong and variable
currents, the Western Corsican Current and the Eastern Corsican Current (hereafter
WCC and ECC) enter the domain of the Ligurian Sea 3.1. Both advect Modified
Atlantic Water (MAW) at the surface and the ECC also transports the denser Levantine
Intermediate Water (LIW). The variability of these currents has been studied by e.g.
Astraldi and Gasparini (1992) and Sammari et al. (1995) and shows a seasonal cycle and
a dependence on local atmospheric forcings. These currents join and give birth to the
Northern Current (hereafter NC) following the French and Spanish coast. NC and WCC
describe a cyclonic circulation along the Liguro-Provençal front. Especially during the
winter, a high mesoscale activity associated with meanders in the NC, eddy formation or
displacements in the Ligurian-Provençal front can be observed (Sammari et al., 1995).

Surface cooling and mixing can transform MAW into Winter Intermediate Water (WIW)
that reaches the buoyancy equilibrium between the MAW and the LIW. This process
can be compared to the dense water formation in the Gulf of Lions, but WIW formation
occurs for less severe weather conditions and only involves the MAW layer (Gasparini
et al., 1999).

The spatial resolution of oceanographic models plays an important role in representing
and simulating ocean processes. But most of the time this parameter is constrained rather
by computing capacity than by physical arguments. So it is desirable to concentrate
the resolution efforts in a particular domain of interest or in a crucial region where
important processes for a larger domain occur. Modelling an oceanographic system at
variable resolution can thus be achieved by nesting a fine grid model in a coarse grid
model. Traditionally (e.g. Fox and Maskell, 1995) we distinguish two types of nesting:
(i) one-way or passive nesting and (ii) two-way or interactive nesting. In the former case,
the fine grid model’s boundary conditions are interpolated from the coarse grid model,
but the dynamics of the fine grid model do not influence the evolution of the coarse grid
model. The two-way nesting approach allows the fine grid model to give a feedback to

33
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the coarse grid model after receiving the boundary conditions from the coarse grid model.
For multiple or telescopically nested models, the grid refining procedure is repeated
several times.

In oceanography, the one-way nesting technique was first applied by Spall and Robinson
(1989) and is now a widespread and operational method for studying ocean system
in a subdomain (e.g. Robinson and Sellschopp, 2002; Zavatarelli and Pinardi, 2003).
For one-way nesting systems, the coarse grid model and the fine grid model can be
implemented independently. This approach is therefore well suited for operational
forecasts. Inconsistencies between the fine and coarse model evolution, especially after
long term integrations, however make the application of the boundary conditions a
delicate task. Two-way nested models avoid the divergence between fine and coarse grid
model and can reduce the problem of inconsistent boundary conditions.

The interactive nesting technique was tested in idealised experiments (e.g. Spall and
Holland, 1991; Fox and Maskell, 1995; Ginis et al., 1998; Blayo and Debreu, 1999) for
different resolution ratios between the fine grid and the coarse grid model. It was shown
that propagating features such as a barotropic modon, baroclinic vortex, a meandering
front or a Kelvin wave along the equator could enter and exit the fine model. Ginis
et al. (1998) pointed out that the solution in the high-resolution model is similar to
the solution obtained by a high-resolution model covering the whole domain. Fine grid
models following a propagating feature were also implemented (Rowley and Ginis, 1999;
Blayo and Debreu, 1999). Realistic ocean systems were studied e.g. the Norwegian
Coastal Current (Oey and Chen, 1992), the Iceland-Faeroes front (Fox and Maskell,
1996), the tropical Pacific Ocean (Ginis et al., 1998) and the Tunisia-Sardinia-Sicily
region (Onken et al., 2003)

The Ligurian Sea was chosen for the present study since the thermohaline structure
of the NC is determined in this area. The NC is one of the major currents in the
western Mediterranean Sea and surrounds the area of the Gulf of Lions where Western
Mediterranean Deep Water formation occurs in winter. Thus, the NC plays an important
role for the preconditioning of the surface water in the Gulf of Lions. The NC may also
affect the WIW formation in the Ligurian Sea. Since eddies of WIW sink to a depth of
about 200-400 m, they may in return also interact with the NC.

Due to the permanent frontal system, the primary production in the Ligurian Sea is
exceptionally high for offshore water in the Mediterranean Sea. Cetacean species are
also more abundant in the Ligurian Sea than in other seas of the Western Mediterranean
Basin. This has lead to the instauration of Ligurian Sea Cetacean Sanctuary, which aims
to protect this valuable marine environment. Primary producers are particularly sensi-
tive to the hydrodynamical processes that also indirectly have an impact on higher species.

Besides the physical and biological particularities, the Ligurian Sea is an interesting test
area since, to our knowledge, no high-resolution study at 1’ has been realised in the
Ligurian Sea. This resolution is achieved by two successive grid refinements of a coarse
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Figure 3.1: The Ligurian Sea with the three major currents: ECC, WCC and NC. The
results of the model will be illustrated in sections A, B, C and D. The solid line represents
the interface between the fine and intermediate grid resolution models. The 500 m and
2000 m isobaths are also shown. While the bathymetry in the Ligurian Sea is rather steep
at the French coast, there is a continental shelf in the western part near the Italian coast.
The Corsica Channel separates this plateau from the Corsica Island.

resolution model of the Mediterranean Sea. The present investigation aims to demon-
strate that telescopically and interactively nested models applied to a realistic basin are a
robust and powerful tool for simulating small-scale ocean processes induced by larger scale
currents and fronts. Because of the strong winds the mesoscale activity in the Ligurian
Sea is generally highest during the winter (Albérola et al., 1995). In order to investigate
the mesoscale flow features, a wintertime situation was thus chosen for the model run.

3.2 Nesting procedure

Although the grid was refined twice, the nesting procedure is explained for clarity in
the case of a single nesting. For multiple nesting, subsequent description of the grid
configuration, of the boundary condition and the feedback holds for every pair of coarse
and embedded finer grid models.

The grid refinement ratio r is supposed to be odd and equal in the both horizontal
directions. In this way, each grid value of the overlapping region of the coarse grid
coincides with a value of the fine grid (figure 3.2). In the vertical, the grid is not refined.
To each double-sigma layer of the coarse grid corresponds one layer in the fine grid at
the same depth when the bathymetry is consistent at the boundary. Furthermore, the
interpolation of the boundary conditions and the feedback procedure are simplified by
using a land mask of the fine grid that is equal to the land mask of the overlapping
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coarse grid for the first r + 1 fine grid boxes counted normal to the boundary. The
remaining land mask can be chosen to follow as closely as possible the real coastline and
the bathymetry.

The nesting procedure between the coarse and fine grid models can be summarised as
follows. For each variable, we:

1. interpolate the fine grid boundary conditions for that variable from the coarse grid
model and impose the boundary conditions to the fine grid model in the so-called
“dynamic interface”,

2. integrate the coarse and fine grid models one time step ahead,

3. average the values of the fine grid model lying on and inside the “feedback interface”
and replace the corresponding values of the coarse grid model. The feedback is thus
performed over the entire volume of the nest delimited by the feedback interface.

Figure 3.2 shows the position of the dynamic and feedback interface for the different
variables, as will be explained in the subsequent sections. For multiple nesting, the
feedback starts with the finest embedded model and its average field replaces the values
of the next coarsest model.

3.2.1 Boundary conditions

The integration of the fine grid model requires boundary conditions for horizontal velocity,
temperature, salinity and turbulent kinetic energy. The interpolation of these boundary
conditions is performed for each vertical level independently.

Normal velocity

The velocity component normal to the boundary has the greatest impact on the flow
inside the fine grid model. Fine grids and coarse grids are staggered in a way that
the interpolation of the normal velocity requires only an interpolation tangent to the
boundary. The boundary conditions of the normal velocity are extracted and imposed in
column C of figure 3.2.
We note xc

vn
the vector formed by the N normal velocity components of the coarse grid

model of a given boundary segment and of a given layer and xf
vn

the corresponding rN
unknown velocity components of the fine grid. The volume conservation constraint can
be formulated by a linear relationship :

xc
vn

= Rxf
vn

(3.1)

where R is a N × rN matrix given by:

Rij =
∆zf

j

r∆zc
i

if ri ∈ {j, j + 1 . . . j + r − 1} (3.2)

and if the ith coarse grid box is a sea box

= 0 elsewhere (3.3)
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Figure 3.2: The relative position of the coarse (heavy lines) and fine grid (fine lines).
The dots (•) show the position of scalar variables, > the zonal velocity and ∧ the merid-
ional velocity component. The large symbols are associated to the coarse grid and the
small symbols to the fine grid. For clarity, only the position of the variables imposed by
boundary conditions are showed for the fine grid. The boundary conditions of the scalars
and the tangent (to the nesting boundary) velocities interpolated from columns A and
D are imposed in column B. The normal velocity component is imposed in column C.
The average values of the scalars and the tangent velocities are injected in the coarse grid
model, starting with column D. For the normal velocity, the feedback begins with column
E.

∆zf
j and ∆zc

i are the vertical grid spacing of the fine and coarse mesh respectively. The
boundary conditions of the normal velocity for the fine grid should be smooth, but in any
case the volume conservation must be satisfied. xf

vn
is obtained by minimising the cost

function J(xf
vn

), penalising abrupt variations under the constrain of conservation (3.1):

J(xf
vn

) = (Lxf
vn

)T (Lxf
vn

) (3.4)

where L ∈ IR(N−2)×N is the discrete second derivative (δi,j = 1 if i = j and 0 otherwise).

Lij = δi,j−1 − 2δi,j + δi,j+1 (3.5)

An application of a minimisation using Lagrangian multipliers would require the inverse of
the singular matrix LTL. The singularity is due to the fact that the cost function does not
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depend on a constant shift and a constant slope of xf
vn

. It is therefore preferable to identify
the vector space constrained by the volume conservation and the unconstrained null space
of R. The basis vectors of the former space are columns of the matrix Vc ∈ IR(rN×N)

and the basis vector of the latter are the columns of V0 ∈ IR(rN×(r−1)N). One can then
decompose xc

vn
into:

xf
vn

= Vcac + V0a0 (3.6)

The components in the constrained space are directly given by (3.1):

ac = (RVc)
−1xc

vn
(3.7)

By minimising the square of the second derivative of the boundary condition, one obtains
then the remaining components:

a0 = −
(
VT

0 LTLV0

)−1
VT

0 LTLVc(RVc)
−1 (3.8)

Finally, the boundary conditions applied to the fine grid mesh yield:

xf
vn

=
(
I−V0

(
VT

0 LTLV0

)−1
VT

0 LTL
)

Vc(RVc)
−1xc

vn
(3.9)

For an efficient implementation of the interpolation procedure, the interpolation coeffi-
cients are computed once and stored.

This interpolation method can be generalised in order to relax the constraint that the
land mask of the fine grid and coarse grid must be equal at the boundary. By a suitable
definition of the reduction operator R, any fine grid land mask can be treated.

Tangent velocity

The velocity tangent to the boundary only plays a role in the horizontal mixing and
advection of momentum. These terms are generally small compared to the other forces.
The tangent velocity component at the fine grid boundary (column B) is therefore obtained
by a simple bilinear interpolation using the four nearest tangent velocity components of
the coarse grid (columns A and D). No volume conservation aspects must be taken into
account for this velocity component.

Scalars

In a first step, temperature, salinity and turbulent kinetic energy are linearly interpolated
normally to the boundary (from columns A and D to column B). Then, these values
are interpolated tangently to the boundary using a similar interpolation formula as the
normal velocity. For the scalars we impose a constraint independent of the sigma-layer
thickness.
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Rij =
1

r
if ri ∈ {j, j + 1 . . . j + r − 1} (3.10)

and if the ith coarse grid box is a sea box

= 0 elsewhere (3.11)

This procedure is obviously not conservative. The design of a stable and flux conservative
interpolation is not trivial, since a smooth flux boundary condition does not guarantee a
resulting smooth scalar field.

3.2.2 Feedback

After each time step the mean values of the fine grid mesh replace the values of the
coarse grid model of the overlapping region. The velocity components are averaged over
the interfaces of the corresponding coarse grid box. For the scalar variables (elevation,
temperature, salinity and turbulent kinetic energy), the mean values over the whole coarse
grid box are taken.
For stability reasons, some authors (e.g. Ginis et al., 1998; Fox and Maskell, 1995) separate
the feedback interface from the dynamic interface. Here no such problems occur and the
feedback interface was chosen as close as allowed by the grid configuration to the dynamic
interface.
In the present case, it would be sufficient to apply the feedback only to the first coarse
grid boxes inside the overlapping region, since the feedback is performed every time step
for both barotropic and baroclinic modes, and for a one-time step forecast every grid box
depends, at the first order, only on its direct neighbourhood.

3.2.3 Sponge layer

It is natural to attribute to the coarse resolution model a higher diffusion than the diffusion
of the fine grid model. At the boundary and over a distance of two coarse grid boxes,
the diffusion in the fine grid model is raised linearly to reach the diffusion of the coarse
resolution model. The utility of a sponge layer for embedded models is justified by the
following reasons:

• Small scale features (compared to the grid spacing of the coarse model) moving
outward the fine grid model cannot properly be resolved by the coarse grid model.
These features are thus damped by the sponge layer.

• The behaviour of the coarse grid model is necessarily different than that of the fine
grid model. For example, the advection speed of a perturbation depends on the grid
spacing (Miyakoda, 2002). Thus, boundary conditions for the fine grid model are
never perfect and totally consistent with the fine model dynamics. The sponge layer
regularises the reaction of the fine grid model to imperfect boundary conditions.

• The hydrostatic inviscid primitive equations with open boundaries are mathemat-
ically ill-posed (Oliger and Sundstrom, 1978; Browning et al., 1990). For one-way
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Figure 3.3: Domain of the three models. The Mediterranean Sea model is delimited by
the dashed line. The dotted line represents the boundary of the Liguro-Provençal model.
The Ligurian Sea model lies inside the solid line rectangle.

nesting, diffusion (or some other special treatment) is thus necessary at the bound-
aries. But a priori it is not clear if this problem occurs to the same extent in a
two-way nested model.

More sophisticated solutions have been proposed to regularise the behaviour of the fine
grid model at the boundary, e.g. the radiative-nesting Boundary Conditions of Chen
(1991), a flow relaxation scheme (Oey and Chen, 1992), a Newtonian-type damping
scheme (Kurihara and Bender, 1980). But most of these methods alter the volume trans-
port inside the fine grid, and are therefore not considered here.

3.3 Implementation

Numerous idealised nesting experiments (e.g. Spall and Holland, 1991) show that for
a fixed resolution of the fine grid model, acceptable results are obtained for a 3 and 5
times coarser large scale model. With higher nesting ratios, substantial degradation is
observed. To achieve a high resolution at regional scales (1’) in the Mediterranean Sea,
a multiple nesting strategy was thus adopted: a fine resolution (1’) regional model of
the Ligurian Sea (6◦19’E to 9◦29’E, 42◦28’N to 44◦29’N) embedded in an intermediate
resolution (3’) model of the Liguro-Provençal sub-basin (2◦51’E to 12◦9’, 41◦51’N to
44◦39’N) nested in a coarse resolution (15’) general circulation model implemented for
the whole Mediterranean Sea (figure 3.3). The main parameters of the three models are
given in table (3.1).

During winter, the first internal Rossby Radius of deformation is of the order of 4− 7 km
in the Ligurian Sea (computed from the Mediterranean Oceanic Data Base (MODB)
Climatology (Brasseur et al., 1996; Rixen et al., 2001b)) and the associated wavelength
is of order 25 - 44 km. Eddies are thus well resolved in the intermediate resolution and
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Mediterranean Sea Liguro-Provençal Basin Ligurian Sea

resolution 15’ 3’ 1’
∆x (m) 21930 4386 1462
∆y (m) 27829 5566 1855

Eddy viscosity (m2/s) 200 8 0.9
Eddy diffusivity (m2/s) 60 2.4 0.27

Table 3.1: The main parameters of the Mediterranean Sea, the Liguro-Provençal and the
Ligurian Sea model. ∆x and ∆y are the grid spacing in zonal and meridional direction.
The β-planes of the three grids are tangent to the Earth at a latitude of 38◦.

fine resolution models.

The model bathymetry is computed from the Smith and Sandwell (1997) bathymetry.
The depth of a coarser mesh box is set equal to the mean depth of the corresponding
finer grid mesh. Due to the steep bathymetry near the western Corsican coast, the WCC
appears to be very sensitive to the difference of the bathymetry of the nesting boundary.
Unphysical results may be obtained when a sigma level of the coarse grid is connected to
a sigma level of different depth. Near the coast this difference can reach several hundred
meters. For simplicity we impose that the bathymetry in the r + 1 first grid points is
equal to the bathymetry of the coarse grid model. In principle, this problem could also
be solved with a vertical interpolation and sometimes an extrapolation of the boundary
condition and the feedback.

The nesting system is forced by National Centers for Environmental Prediction (NCEP,
http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.html) reanalysis atmospheric fluxes.
The coarse grid model encompasses some grid points of the Atlantic Ocean. Temperature
and salinity at the Atlantic boundary are relaxed to their monthly climatology mean
from the MODB and a mean flow is imposed. The freshwater discharge of the Rhône
(climatology mean computed from Tusseau and Mouchel (1994)) and the Arno (Rinaldi,
personal communication) are also included in the intermediate grid size model.

The coarse grid model’s initial conditions are also obtained from the MODB Climatology
after a 10-year spin-up of the coarse grid model. The initial conditions of the fine grid
and intermediate grid are then interpolated. The whole nesting system is spun up during
three months using perpetual January 1998 forcings.

The implementation of the nesting system was tested in an idealised, conservative
configuration. Without atmospheric and riverine forcings and with the strait of Gibraltar
“closed”, the nesting system conserves the total volume. As pointed out earlier,
temperature and salinity are not conserved by the boundary conditions used is the
present implementation. But the losses and gains of these scalars appear to be very small
compared to their spatial standard deviation.
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3.4 Comparison between one-way and two-way nest-

ing

The LIW is formed in the Eastern Mediterranean and has travelled a long path before
reaching the Ligurian Sea. In the present implementation, the LIW vein crosses the
two nested models and is thus particularly sensitive to the nesting strategy used. In
order to elucidate the gain of a high-resolution two-way nested model, a one-way nesting
experiment was carried out. The parameters, initial conditions and the interpolation
of the boundary conditions of the three models are identical to the two-way nesting
experiment, but now each model does not depend on the finer resolution model.

Figure 3.4 shows temperature sections of the NC. The mean and the standard deviation
of the temperature during the three winter months for the Ligurian Sea model in the
two-way and one-way configuration and the Liguro-Provençal basin model in the one-way
case are depicted. The extension and the temperature of the LIW vein is in all three cases
smaller and colder than measured by Albérola et al. (1995). The clearest signal of the
LIW is found for the two-way nested high-resolution model and the simulated properties
of this vein are close to the observed values. In the one-way high resolution model of the
Ligurian Sea, the LIW core is still present, but the mean temperature is too cold and the
variability of this current is also lower than in the two-way nested model. With a three
times coarser grid, the model was unable to simulate the LIW vein in the Ligurian Sea
as can be seen on figure 3.4, and the LIW flows through the Liguro-Provençal model in a
rather unstructured and unsteady manner. The fine grid was thus necessary to maintain
the temperature gradient high between the LIW and the offshore water masses and to
confine the NC to the coast.

Furthermore, when a two-way nesting strategy is used instead of a one-way nesting, the
results in the coarse grid are also improved. In the Gulf of Lions (covered by the 1/20◦

grid model) the structure of the NC is also better represented in the two-way nested
system than in the one-way nested models. The feedback from the finer resolution model
thus also improves the simulation at larger scale, not only in the region of feedback but
also in remote places.

3.5 Results

We present here the results of a three-month integration, starting 1 January 1998. The
simulated transports and water properties of the three major currents (ECC, WCC and
NC) are averaged over the integration period and are compared to results of surveys
carried out in this region. The salinity and temperature gradient of the Liguro-Provençal
front and the scale of mesoscale structures in the Ligurian Sea and the Gulf of Lions are
also validated in the subsequent sections. The overall characteristics of the Ligurian Sea
are well reproduced in the model. The signals of the ECC, WCC and the NC can clearly
be seen in the surface velocity (figure 3.5). The transitions from 1’ to the 3’ model and
from the 3’ to the 15’ model (not shown) are smooth for all variables.
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Figure 3.4: Mean temperature and standard deviation (in ◦C) at section C of figure 3.1
for the two-way (top) and the one-way nested model at 1/60◦ resolution (centre). The
two bottom figures are the results of the 1/20◦ model for the one-way nesting strategy.
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Figure 3.5: Mean velocity in winter at the surface in the Ligurian Sea. The solid line
represents the interface between the fine and intermediate grid resolution models.

3.5.1 The Eastern Corsican Current

The ECC flows to the north through the Corsican Strait up to a depth of 450 m and
with a width of 35 km. Its intensity increases in spring and weakens in fall (Astraldi
et al., 1999). The mean vertical structure of the simulated ECC at the strait of Corsica
is shown in figure 3.6. The depth and the width are very close to the estimated values.
A section in the salinity field shows that the MAW and the LIW are well present in the
model. The order of magnitude of the velocity in the strait (0.2 m/s) reproduced by the
model is in good agreement with the direct measurements (0.1 - 0.3 m/s). The simulated
flows of MAW (from the surface to 200 m) and of LIW through the strait are 0.59 Sv
(1 Sv = 106m3/s) and 0.38 Sv respectively. These transports are comparable to annual
mean transport based on measurements: 0.56 Sv for the surface flow and 0.14 Sv for the
intermediate flow (Astraldi and Gasparini, 1992; Astraldi et al., 1999).

3.5.2 The Western Corsican Current

The WCC follows the western Corsican coast in its northward flow. It extends 30 km
offshore and its depth reaches 600 m. The WCC transports about 1.15 Sv MAW into the
Ligurian Sea. The transport is at a maximum during spring. Typical velocities of the
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Figure 3.6: Cross-section in the strait of Corsica (section A of figure 3.1) of the mean
salinity and the mean zonal velocity (in m/s) of the model. The two water masses MAW
and LIW transported by the ECC can be seen in the salinity section.

WCC range around 0.09 m/s (+/- 0.06 m/s standard deviation) during winter (Astraldi
and Gasparini, 1992; Sammari et al., 1995).

This current flows through all three models of the nesting system. Figure 3.7 shows
the N-S component of the WCC west of the Capo Rosso and the salinity at the same
location. The depth (800 m) and the width (32 km) of the WCC are comparable to the
depth obtained by measurements. An unphysical countercurrent next to the WCC can
be found in the intermediate resolution model. This countercurrent is characterised by a
maximum velocity of 0.2 m/s. Mean transport of the WCC during the model integration
near the Capo Rosso was 1.22 Sv and is in good agreement with values of Astraldi and
Gasparini (1992). However, a high variability of the WCC in position and strength was
observed in the model. The steep bathymetry and the nesting boundaries transecting the
topographic slope make the modelling of the WCC a delicate task.

3.5.3 The Northern Current

The NC is one of the major veins of the Western Mediterranean Sea. It takes birth in the
Ligurian Sea and follows the continental slope until the Catalan Sea. Its width ranges
from 20 km in winter to 30 km in summer. From late January to mid-March, the 0.1
m/s isotach is steep and deeper than 200 m. The transport of the upper 200 m ranges
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Figure 3.7: Cross-section of the WCC (section B of figure 3.1) of the mean salinity and
the mean zonal velocity (in m/s) of the model.

from 0.9 to 1.5 Sv. Below this level (between 200 and 700 m), only a weak transport of
0.2 to 0.4 Sv is measured. Generally, MAW can be found at the surface in the NC lying
above a core of LIW located relatively close to the coast at 20-25 km and at depths of
400-500 m. Cooling and homogenisation of the MAW processes occur in winter and a
relatively thin layer of WIW (T = 13.0 - 12.9 ◦C, S = 38.12-38.20 ) between 100 and 200
m is formed in late February (Sammari et al., 1995; Albérola et al., 1995).

In figure 3.4a and 3.5.3 cross-sections of the temperature and the normal velocity are
shown. The velocity of NC (0.23 m/s) is lower than the estimation of the maximum
velocity based on geostrophy (0.6 m/s, Sammari et al. (1995)) and direct measurements
(0.5 m/s, Albérola et al. (1995)). The transports simulated by the model give satisfactory
results at the surface (0.95 Sv for the first 200 m), while the transport of 0.12 Sv between
200 m and 700 m is slightly lower than measurements by Sammari et al. (1995). The
signature of the different water masses is also well present in the model. The temperature
section (figure 3.5.3) very clearly displays the core of LIW advected by the ECC that
joins the NC. At a depth of 100 m, a temperature minima characterising the presence of
WIW is successfully reproduced by the model. Above the WIW, a layer of less modified
and advected MAW can be observed in the model.

During wintertime the NC exhibits a high mesoscale activity. This observed variability
was associated to meanders of the NC due to baroclinic instabilities. The meanders have
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tion C of figure 3.1) in func-
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from the coast.

a typical wavelength of 30-60 km and propagate with a phase velocity of 10 km/day
downstream. The fluctuations perpendicular to the coast are of a few tens of km and
can thus affect the whole width of the current (Albérola et al., 1995; Sammari et al.,
1995). The offshore displacement of the NC can be easily seen on figure 3.4b showing the
standard deviation of the temperature. Since the temperature of LIW is very different
from the surrounding water masses, the highest variability is located next to the core of
LIW.

Figure 3.9 shows a horizontal section of temperature at 200 m. Around the longitude
7◦30’ and latitude 43◦20’ we see the development of a meandering instability. Its
wavelength is about 55 km. The phase velocity is more difficult to determine because
different perturbations of the front with different phase velocity are overlaid. The phase
velocities reproduced in the model are about 20 km/day.

The unstable path of the NC also favours the exchange between the LIW and the
much colder and saltier offshore water masses. Filaments and eddies of LIW leave the
main flow path of the NC and maintain their characteristic thermohaline properties for
sometimes up to 20 days before they diffuse or return back to the main flow of the NC.
The standard deviation of the temperature at a section of 200 m depth shows that the
outbreak of LIW filaments and eddies often occurs in a region around 7◦30’ longitude
and 43◦20’ latitude (Figure 3.10). This might be due to the topographic feature at
this location, which perturbs the NC following the continental slope. The topographic
feature is characterised by the 2000 m isobath on figure 3.1. This plateau located in the
continental slope extends about 15 km offshore.

Figure 3.11 shows the transport of LIW crossing the section in the NC during the model
integration. The high variability is due to interaction of the LIW vein with the offshore
water masses. The sharp minimum at day 24 is due to a breaking of the LIW vein by



48 Chapter 3. Nesting

lon.

la
t.

13.2

13.2

13
.2

13.2

13
.2

13.2

13
.4

13.4

13.6

13.6

13
.6

13
.6

13.6

 30’    7oE  30’    8oE  30’    9oE 

 40’ 

  43oN 

 20’ 

 40’ 

  44oN 

 20’ 
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of the LIW vein.
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Figure 3.10: Standard deviation of temperature (in ◦C) at 200 m. The high variability of
the NC at 43◦10’N and 7◦30’E might be due to topographic interactions.
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Figure 3.11: The transport of LIW (in m3/s) trough section D of 3.1 as a function of time
(days). Water masses warmer than 13.4 ◦C and below 100 m were identified as LIW.

offshore water. After this blockade is released, the LIW transport reaches its highest
value observed during the model integration around day 50.

In the section where the transport of LIW was computed, another interesting process
occurs. Surface cooling has produced a water mass called winter intermediate water
(WIW), with a temperature of 12.9◦C -13◦C and a salinity of 38.3-38.4 (figure 3.12).
These rotating lenses of WIW (also called weddies) have been found in the Catalan Sea
and in the Ligurian Sea (Gasparini et al., 1999). The characteristics of the simulated
WIW lens agree with the observed range of temperature 12.5-13◦C and salinity 38.1 -
38.3 (Salat and Font, 1987). Particular to the present situation is its strong interaction
with the vein of LIW broken into two branches. This caused a decrease of the LIW
transport, as can be seen on figure 3.11 at day 64. During the three winter months the
formation of eight WIW lenses has been observed, most of them in January.

3.5.4 The Liguro-Provençal front

The Liguro-Provençal front is formed by a high gradient in temperature and salinity
separating coastal waters from those located offshore. Coastal waters are warmer (more
than 14◦C) and less saline (about 38) than the interior waters, with temperatures below
13.8◦C and salinities of 38.1-38.2 (data collected in early spring at the Gulf of Genoa
(Gasparini et al., 1999)). Other studies (e.g. Albérola et al., 1995) indicate that the
vertical mixing occurring in winter leads to the homogenisation of the surface layer
temperature in both the coastal and the interior waters. The winter surface temperature
is about 13◦C, and these data are collected in a section of 55 km from the coast to
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Figure 3.12: Temperature (in ◦C) and salinity at section D of figure 3.1.

the interior, starting near Nice. The model simulates well the Liguro-Provençal front.
Gradients are consistent, with a difference of about 0.3◦C and 0.2 between coastal and
interior waters. Coastal waters show temperature and salinity values of about 13.3◦C
and 38 , and in the interior the values are of about 13◦C and 38.2 respectively during
winter. In early spring (March), the salinity rises by about 0.1 over the whole Ligurian
Sea, but for temperature, similar values to those of Gasparini et al. (1999) are obtained.
The temperature of the coastal zones ranges between 13.9 and 14.5◦C and between 13.6
and 13.7 ◦C in the interior of the basin (not shown). The Liguro-Provençal front can also
be seen in remote sensed sea surface temperature (SST). Figure 3.13 shows a composite
AVHRR (Advanced Very High Resolution Radiometers) SST for the 23 March 1998 and
the corresponding model result. The model gives a quite satisfactory result, except near
the Italian coast where the temperature is about 0.5 ◦C too low. Also the temperature
at the surface is very smooth. This is due to the coarse resolution of the atmospheric
heat flux.

3.6 Conclusions

A complex nesting system was implemented at three different resolutions in the Mediter-
ranean Sea. Two successive zooms are performed to study small-scale processes of the
Ligurian Sea. At a reasonable cost it was thus possible to set up a model of 1’ resolution of
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Figure 3.13: Remotely sensed SST (AVHRR) and model SST (in ◦C) for 23 March 1998

the Ligurian Sea by avoiding the open boundary problem. The two-way nesting approach
appears to be an efficient and robust method for simulating oceanographic systems
at variable resolutions. The Northern Current is better represented in the two-way
nested model than in a coarser resolution grid and in the one-way nested model. The
improvement was not only observed in the region covered by the high-resolution model,
but also downstream in the coarse resolution model. The interaction between small-scale
processes and larger scale currents and fronts are taken into account: meanders and
eddies induced by instabilities of basin-wide currents and fronts are well observed in the
intermediate and fine grid models. No particular problems were observed at the nesting
boundaries. Due to the feedback and the sponge layer, the transition between the finer
and the coarser grid model is smooth and confirms the robustness of the adopted nesting
procedure.

The nesting system was able to simulate the major characteristics of the Ligurian Sea and
the Liguro-Provençal basin. The three coastal currents influencing this area are present
in the model at position, width and depth comparable to those obtained from different
surveys. The transports of the Western Corsican Current (WCC), the Eastern Corsican
Current (ECC) and the Northern Current (NC) are also consistent with values computed
from observations. Especially the transports of the WCC and the ECC are in very good
agreement with previous measurements (Sammari et al., 1995; Astraldi and Gasparini,
1992; Astraldi et al., 1999). However, a countercurrent next to the WCC is formed.
This countercurrent is, to our knowledge, not observed and could be an artefact of the
interpolation of the boundary condition. This current seems to weaken the NC and should
be further analysed.



Chapter 4

Sequential assimilation methods

In the present review of sequential assimilation methods we limit ourselves to two classes
of assimilation techniques: optimal interpolation and assimilation filters such as the
Kalman filter. Given a certain number of observations, the central problem in data
assimilation is how the model results and especially how the unobserved model variables
should be corrected. Optimal interpolation and filtering methods are based on two
different approaches to estimate the relation between the observed variables and the
unobserved variables.

Optimal interpolation is based at the same time on a statistical optimality criterion
and on physical assumptions concerning the relationship between the surface elevation,
temperature, salinity and velocity. Dynamical balances between these variables such as
geostrophy or a constant hydrostatic pressure at a given depth are used to prescribe
the covariance between these variables. Data assimilation via optimal interpolation can
therefore ensure that the model state is dynamically balanced.

For filter methods, the dynamical model itself is used to determine the relationship
between variables. Different dynamical regimes can therefore implicitly be taken into
account. For example, during a deep water formation, the surface properties are highly
correlated to the subsurface properties, but a strong summer stratification almost
decouples the surface layer from the lower layers. These changes in the dynamical
regimes must be prescribed explicitly for optimal interpolation schemes, for example by
parameterising the covariance differently during each season (De Mey and Benkiran,
2002).

Filtering methods such as the Kalman filter can however learn from the optimal interpo-
lation schemes in order to validate the physical structures and the dynamical coherence
of the relationship between the variables.

4.1 Optimal interpolation

In this section we will describe first the general frame of optimal interpolation and
how the optimal interpolation schemes merge model results with observations. A

53
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justification of the results will be given later on when the filtering methods are derived.
Optimal interpolation can in fact be viewed as a simplified Kalman filter. But optimal
interpolation does not require that the model is placed in a statistical frame. There-
fore it is preferable to introduce it independently of the statistical description of the model.

Given the model forecast xf and the observations yo, and their respective error co-
variances Pf and R, we want to find the optimal combination of the model and the
observations. For the optimal interpolation approach, these two error covariances are
inputs to the assimilation problem.

We also assume that observations and model are related linearly by means of the obser-
vation operator H. This is generally the case for most types of observations and models.
Different ways are possible to define the optimal melting of observations and model re-
sults. They are discussed in section 4.3.2. If the errors follow a Gaussian pdf and if
the observation operator is linear, they all lead to the same result. The model state xa

taking the model forecast xf and the observations yo into account, is given under these
assumptions by:

xa = xf + K
(
yo −Hxf

)
(4.1)

K = PfHT
(
HPfHT + R

)−1
(4.2)

Pa = Pf −KHPf (4.3)

The matrix Pa is the error covariance matrix of the a posteriori state xa. The main
difficulty in optimal interpolation is the specification of the a priori error covariance
matrix Pf . If one is only interested in the a posteriori state, it is sufficient to know the
matrix HPf . This matrix represents the covariance between the complete state vector xf

and the observed part Hxf :

HPf = E
[(

Hxf −Hxt
) (

xf − xt
)T]

(4.4)

This covariance tells us how an error, detected in the observed part of the state vector,
should affect the unobserved variables.

4.1.1 Lowering and Lifting scheme

The Topex/Poseidon mission provided to the oceanographic community sea level mea-
surements with valuable information on the ocean dynamics at mesoscale and at large
scale. Cooper and Haines (1996) proposed an optimal interpolation scheme for altimetry
assimilation. By ignoring the horizontal covariance in (4.1) and (4.2), the update for each
single elevation point is given by:

ζa = ζf +
σf 2

σf 2 + σo2
(ζf − ζo) (4.5)

where ζo, ζf and ζa are the observed surface elevation, the a priori and the a posteriori
elevation respectively. Especially for altimetry, one has to pay attention that the observed
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elevation corresponds to the model elevation in terms of reference level and resolved
processes as tides, inverse barometer effects and the seasonal steric cycle (Fox et al.,
2000a).

The change in temperature and salinity is based on the assumption that the horizontal
velocity is zero at a given reference level H. This implies that the pressure is constant at
this level and, under the hydrostatic approximation, the surface elevation, temperature
and salinity are related in the following way:

ρ0gζ = −g

∫ 0

H

ρ(T, S)dz + pb (4.6)

where pb is the constant pressure at the reference level and ρ0 is the density of sea water
at the surface. An elevation increment is therefore related to a density increment by:

ρ0g∆ζ = −g

∫ 0

H

∆ρdz (4.7)

The whole vertical temperature and salinity profiles are lifted or lowered such that equa-
tion (4.7) is satisfied. Water is removed or added at the surface and at the bottom. The
added top or bottom water has the same properties than the water already present at
this location. Obviously, this method conserves the temperature and salinity properties.
However, in weakly stratified regions, e.g. near the poles, this approach can not be applied
since the displacement becomes very large even for small sea level increments.

4.1.2 System for Ocean Forecasting and Analysis (SOFA)

The major problem in data assimilation is to specify a realistic error covariance matrix
that can be implemented in an efficient way. In particular, the error covariance should
not need to be formed explicitly since it is a n×n matrix with n ∼ 105−107. De Mey and
Benkiran (2002) introduced a simplification operator, which projects the error covariance
on a low dimensional error space. The columns of the n×r matrix L form an orthonormal
basis of this error space and the projection operator1 is therefore LT . The error covariance
of the forecast in this error space is noted by P̃f :

Pf = LP̃fLT (4.8)

The Kalman gain K and the Kalman gain expressed in the reduced state space K̃ are
then given by:

K̃ = P̃f (HL)T
[
(HL)P̃f (HL)T + R̃

]−1

(4.9)

K = LK̃ (4.10)

1In De Mey and Benkiran (2002) the projection operator is noted S and the error space is defined by
the columns of ST . A different notation is chosen here for coherence with other chapters.
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The error space reduction decreases the error covariance at the observation locations
HPfH.

HPfH = E
[(

Hxf −Hxt
) (

Hxf −Hxt
)T]

(4.11)

This loss of variance must be compensated by increasing the observation error covariance
R̃ such that:

HPfH + R = (HL)P̃f (HL)T + R̃ (4.12)

The additional observation error can be interpreted as a representativeness error, since an
error perpendicular to the error space formed by L cannot be corrected and represented
in this given error space. In practice, R̃ is specified directly without estimating explicitly
the contribution of the perpendicular space. Therefore, many authors do not make a
difference between R and R̃.

Two choices were considered by De Mey and Benkiran (2002) for the error reduction:
3D EOFs and 1D vertical EOFs. The 3D EOFs are intended to be the eigenvectors of
the error covariance matrix Pf . Therefore they should be computed from an ensemble
of states representing the uncertainty associated to the model results. For instant, the
difference between the observations or model output and the climatology, or the model
result minus the time mean are possible choices (Pham et al., 1998; Brasseur et al.,
1999). The EOFs can also be obtained from an ensemble of model states by perturbing
uncertain inputs to the model, e.g. the position of an incoming current or even the
bathymetry for a 2D wave forecast (De Mey et al., 2004). The matrix P̃f is consequently
diagonal and holds the eigenvalue of the corresponding EOFs.

In another approach, the vertical and horizontal covariances are handled differently. The
matrix L is formed by a series of n′ × r blocks involving only the n′ grid points of the
same water column.

L =

 L(1) 0
L(1)

0
. . .

 (4.13)

The blocks L(j) are composed of the vertical EOFs which can vary in space. The matrix
P̃f is no longer diagonal. But we assume that the kth vertical EOF amplitude is only
correlated with the kth vertical EOF amplitude of the other water column. This implies
that P̃f can be rearranged in r blocks along its diagonal. Each of these blocks describes
the horizontal covariance of a given EOF amplitude. This covariance P̃f,i is modelled by
specifying the variance Di and the correlation Ci separately.

P̃f,i = Di1/2
CiDi1/2

(4.14)

where Di is a diagonal matrix and the diagonal elements of Ci are all equal to 1 and the
other elements of the correlation matrix are between -1 and 1. Di is specified on the basis
of the eigenvalue of the vertical EOFs and the horizontal correlation Ci is parameterised
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by a given function of the distance between two grid points.

The SOFA analysis scheme was implemented e.g. in the Azores-Madeira region (Gavart
et al., 1999) and in North Atlantic (Faucher et al., 2002). On an operationally basis,
SOFA has been applied to the Mediterranean Sea in frame of the MFS projects (De Mey
and Benkiran, 2002) and to the North and Tropical Atlantic, the Mediterranean Sea and
to the Global Ocean within the MERCATOR project (Bahurel et al., 2001, 2004).

4.2 Statistical description

Optimal interpolation methods require the specification of the model state’s error covari-
ance. The choice of the error covariance for those schemes is based partially on physical
assumptions. The magnitude of a probable error can also be estimated by identifying
the error sources of the model and by studying the propagation of the error through the
model. In the following section, the model is placed in a broader statistical frame, which
takes the uncertainties affecting the model results into account.

4.2.1 Probabilistic forecast

If the system state is perfectly known at an initial time t0, a perfect model would allow us
to forecast the state of the system at any future state by performing a series of successive
forecasts.

x0 = xi (4.15)

xi+1 = Mi(xi) (4.16)

It is clear that in real world, neither the initial state vector nor the model are perfectly
known. The number and the quality of observations are also limited and therefore errors
on the estimated initial state always remain. The uncertainties of the model stem from two
different sources: the boundary conditions and the discretised model equation including
the parameterisation of unresolved processes. The true state xt

i is therefore governed by
the following system introducing two unknown error terms: ζi and ηi

xt
0 = xi + ζi (4.17)

xt
i+1 = Mi(x

t
i) + ηi (4.18)

The estimated initial state vector differs from the true initial state by the error ζi,
which is as unknown and inaccessible as the true initial state. But our experience
can tell us what a probable error is and what is not. For instance, a small error is
likelier than a large error. An error that would produce a dynamical inconsistent
true initial state is also improbable. It is therefore interesting to describe the error
by a probabilistic density function (pdf). The uncertainties lead us to the represen-
tation of the error of the initial condition as a random vector following a given pdf.
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The estimated initial state is then a realisation of this random vector. It should
be noted that the description of the true initial state by a random variable reflects
only our limited capability to determine the true state of the studied deterministic system.

The approximate dynamical model is another source of error. At each integration step,
the error ηi is introduced. This error leads in most cases to a progressive error growth
of the forecast. As before, we assume that we know what a likely error is and what is
not. The unknown error ηi is therefore treated as a random vector following a known
distribution.

If these errors are small, the straightforward integration of equation (4.16) by neglecting
the errors, can give us a likely future state of the system for short forecast time lead. For
many applications, however, it is not sufficient to provide only the forecast of a system.
An estimation of its reliability is also necessary in some cases, in particular for data
assimilation. Therefore we seek the pdf of the forecast xi.

The pdf of the state vector at the initial time is the pdf of the initial condition noted
pxi

(x). For a moment, the model error is neglected, i.e. the model is considered as perfect.
The probability that a forecast xi+1 has a value within the small volume dx centred in x,
is the probability that the system was at time ti near the state x′ = M−1

i (x) within the
corresponding volume dx′.

px0(x) = pxi
(x) (4.19)

pxi+1
(x) =

∣∣∣∣∂Mi(x
′)

∂x′

∣∣∣∣−1

pxi
(x′) for x = Mi(x

′) (4.20)

where
∣∣∂Mi

∂x′

∣∣ is the Jacobian of the function Mi. It can be interpreted as the ratio of the
volumes dx′ and dx.

This relation implies the inverse of Mi. For a general function, this inverse might not
exist or is not unique. If two different states can produce the same forecast, then the
probability of this forecast is simply the sum of the probabilities assuming the system
was either in one state or in the other. The probability of a forecast for which no previous
state exists is of course zero. But for a model Mi derived from a dynamical equation,
the inverse exists and can be obtained by inversing the time step. In practice, this is not
possible for stability reasons. Therefore we will introduce an alternative formulation, the
Fokker-Plank equation, based only on the forward model.

So far we have neglected the model error. The ocean is a dissipative system and forced by
the atmosphere. Therefore, it will in most cases “forget” the error of the initial condition
after the integration over several characteristic time lengths. The model error (including
the forcing errors) will be then the dominant error source (Navarra, 2002). We suppose
the random vector ηi follows the distribution pηi

(x) and that it is neither time correlated
nor correlated with the error of the initial condition. The error ηi introduce a spread of
the probability and can be computed by (Pham, 2001):
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px0(x) = pxi
(x) (4.21)

pxi+1
(x) =

∫
IRn

[∣∣∣∣∂Mi(x
′)

∂x′

∣∣∣∣−1

pxi
(x′)

]
x′=M−1

i (y)

pηi
(x− y)dy (4.22)

This equation gives a complete description of the probabilistic, nonlinear time evolution
of the system. Its solution provides us the probability of finding the system in a certain
state at any time ti. If the dynamical model is unbiased, the last equation yields the
Fokker-Plank equation in the limit of a continuous time and for a Gaussian distributed
model error. The continuous time model of the so-called Markov process can be written
as follows:

dx(t) = g(x, t)dt + dη (4.23)

where dη is a random term describing the model uncertainties. The characteristics of the
model error are more difficult to define in the continuous-time case. The error integrated
over the time interval ∆t has a variance of ∆tQ. The normalised error Q−1/2dη is also
called a Wiener process. The pdf of x(t) is the solution of the Fokker-Plank equation:

∂px

∂t
+

n∑
α=1

∂(gαpx)

∂xα

=
1

2

n∑
α,β=1

Qα,β
∂2px

∂xα∂xβ

(4.24)

An original proof of the Fokker-Plank equation derived from equation (4.22) can be found
in appendix A. A detailed derivation can also be found in Jazwinski (1970). However, it is
impracticable for large models such as ocean models to solve (4.22) or the Fokker-Planck
equation directly. The pdf pxi+1

is an n-dimensional function. If pxi+1
is discretised on a

grid of for example 100 grid points in each dimension, the pdf would be composed of 100n

scalars where n is about 106 for most ocean models. But fortunately we do not need to
know the probability of all states. An important part of the state space represents very
unlikely ocean states. For data assimilation, the exact probabilities of these states are
irrelevant. Therefore, the Monte Carlo method and the Lyapunov Equations only explore
the small part of the state space constituted by likely states.

4.2.2 Ensemble forecasts, the Monte Carlo method

The ensemble method for probabilistic forecasts in the context of data assimilation was
first applied in oceanography by Evensen (1994) and in meteorology by Houtekamer and
Mitchell (1998). A review of this method can be found in Evensen (2003). It consists in
the generation of a large number N of perturbations of the two errors sources: the initial

conditions and the model error. The perturbations ζi(k)
and ηi

(k) for k = 1...N are simply
realisations of the random vectors ζi and ηi. An ensemble of future ocean states is then
obtained by integrating the model for each member separately.

x
(k)
0 = xi + ζi(k)

(4.25)

x
(k)
i+1 = Mi(x

t
i) + ηi

(k) (4.26)
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Each member of this ensemble can be integrated independently of the others. Ensemble
forecasts can therefore be implemented very efficiently on parallel clusters.

In principle, the pdf of the future ocean state could be computed by the fraction of
ensemble members given in a certain volume of the state space. But for data assimilation
this step is not necessary since the analysis can be expressed directly in terms of the
ensemble members.

The advantage of ensemble forecasts is their relatively simple concept. Often it is also
easier to define a likely perturbation than a pdf. In particular, the error term ηi can
be implicitly defined by perturbing, for each ensemble member, uncertain forcings and
parameters. Each model can be integrated with perturbed atmospheric forcings and a
different set of empirical constants of the parameterised processes. But the perturbation
of each member must reflect the real uncertainty associated to the forcings terms or
parameters (Houtekamer and Mitchell, 1998).

Some members can also be obtained by a completely different model. Such ensembles
are called poor man’s ensemble (Ziehmann, 2000) or super-ensembles when the different
model results are merged into an improved deterministic forecast (Krishnamurti et al.,
1999). The assimilation of independent data can also a posteriori also help to determine
which combination of perturbation produces the best forecast. This is interesting for
calibration and validation of the model and its parameterisations.

The main drawback however is that large ensembles are needed to obtain accurate error
statistics. The statistical moments of the pdf, in particular the error covariance which
plays a central role in data assimilation, are affected by a relative error of the order
of N−1/2 where N is the ensemble size. This problem can be reduced by choosing the
perturbation with care (Houtekamer, 1995; Evensen, 2004).

4.2.3 The Lyapunov equation

Ocean models are generally nonlinear, but the linear case is important since it leads to
some fundamental properties of error propagation. Some properties are also applicable
to weakly nonlinear models. In particular, growing and decaying error modes can be
determined for the linear models. Pham et al. (1998) has shown that this is important
for the stability of an assimilation scheme.

Linear models

The true model dynamics can be written in the linear context as:

xt
0 = xi + ζi (4.27)

xt
i+1 = Mix

t
i + fi + ηi (4.28)
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The vector fi represent all terms of the linear model independent of the system state.
For linear ocean models, this vector represents the external forcings such as the winds.
The model forecast error is defined by the difference between the true state xt

i and the
predicted state xi.

ζi = xt
i − xi (4.29)

This error of the model state is governed by the following stochastic equation:

ζ0 = ζi (4.30)

ζi+1 = Miζi + ηi (4.31)

For a linear model, the evolution of each statistical moment of ζi is independent of each
other. We also assume that the initial condition and the model are unbiased and their
error covariance are written as Pi and Qi respectively.

E(ζi) = 0 Pi = E(ζiζiT )

E(ηi) = 0 Qi = E(ηiηi
T )

By taking the expectation of equation (4.28) one can show that the mean of the random
vector xi+1 is the central forecast:

x0 = xi (4.32)

xi+1 = Mixi (4.33)

and the error covariance Pi is given by:

P0 = Pi (4.34)

Pi+1 = MiPiM
T
i + Qi (4.35)

This equation is called the Lyapunov equation. It describes how the error variance and
covariance are propagated through a linear model. It is interesting to note that the
Lyapunov equation does not make any assumption concerning the pdf of the errors ζi

and ηi except that their mean is zero.

But if these errors are Gaussian distributed, then also the model state vector at any time
will follow a Gaussian distribution. This is due to the fact, that the linear stochastic
model implies multiplications with a constant matrix and sums of two random vectors.
In fact, the product of a constant matrix and Gaussian random vector and the sum of
two Gaussian distributed variables can always be described by a Gaussian pdf.
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Nonlinear models

The propagation of this error through a nonlinear model is obtained by subtracting the
evolution of the true state (4.18) from the central forecast (4.16).

ζi+1 = Mi(xi + ζi)−Mi(xi) + ηi (4.36)

If the error is supposed to be small, then the error propagation can be expanded by a
Taylor series. The αth component of the model state’s error ζi+1 is obtained by:

ζi+1α
=

∂Miα

∂xβ

ζiβ +
∂2Miα

∂xβ∂xγ

ζiβζiγ +O(ζ3) + ηiα (4.37)

The greek indexes denote the components of vectors of matrices. For clarity, the sum-
mation sign for repeated indexes has been omitted. We neglect here the third order
contribution in the error of the model state. As it was shown before, the error ζi can be
expressed as a probability density function. From equation (4.37) the error can also be
quantified in terms of its statistical moments. The two first statistical moments are:

E
[
ζi+1α

]
=

∂Miα

∂xβ

E
[
ζiβ

]
+

∂2Miα

∂xβ∂xγ

E
[
ζiβζiγ

]
+ E

[
O(ζ3)

]
(4.38)

E
[
ζi+1α

ζi+1β

]
=

∂Miα

∂xγ

∂Miβ

∂xδ

E
[
ζiγζiδ

]
+ E

[
O(ζ3)

]
+ Qiαβ (4.39)

The first moment is the mean error or the bias and the second moment is related to the
covariance by:

Piαβ = E
[
ζiαζiβ

]
− E [ζiα] E

[
ζiβ

]
(4.40)

Some important properties of linear models are no longer true if the model is nonlinear.
First of all, even if the initial condition and the model are unbiased, there is no guarantee
that the nonlinear forecast will also be unbiased. This effect can be shown with a simple
example. The bottom stress τ is often parameterised by a quadratic function of the
velocity u:

τ = au2 (4.41)

We suppose that this parameterisation is correct and that the velocity estimation is un-
biased. A velocity error ζu, lead to the following error in the bottom stress:

ζτ = a(u + ζu)
2 − τ = 2auζu + aζ2

u (4.42)

The mean error in the bottom stress is therefore positive:

E [ζτ ] = aE
[
ζ2

u

]
> 0 (4.43)
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Positive velocity errors have a larger impact on the bottom stress than negative errors.
Both errors do not compensate each other and therefore a positive bias remains.

This approach is very similar to the turbulence closure problem. The errors here
correspond to the subgrid scale processes of the closure problem. Therefore, the model
parameterisation takes the bias due to unresolved subgrid scale features (here the bottom
boundary layer), already into account. The errors resolved on the model grid however,
have also an effect on the expected mean flow.

The other characteristic of the probabilistic nonlinear models forecast is that the
statistical moments are no longer independent of each other (e.g. Evensen, 1994). The
forecast of a statistical moment may depend on all higher moments. It has been shown
for instance, that the mean error depends on the covariance. In the extended Kalman
filter, all moments higher than the covariance are neglected. More sophisticated closure
schemes for the statistical moments exist (Fleming, 1971a,b; Leith, 1971; Leith and
Kraichnan, 1972; Leith, 1974) but their application to large ocean models is questionable
since the estimation of the error covariance is already very difficult and can only be done
in a approximative way.

The coupling of the statistical moments has also the consequence that an initial Gaussian
distributed error may become distorted. The pdf of the forecast error can have a more
complex distribution than a simple Gaussian one. For example, the error can follow for a
multimodal pdf. Such a phenomenon occurs for instance in the case of flow instabilities
leading to two (or more) likely but distinct ocean states.

For a weakly nonlinear ocean model, the second order derivative of the model is neglected
in equations (4.38) and (4.39). This is the approach chosen to derive the extended
Kalman filter.

As in the linear case, the pdf of the model state’s error can be approximated at any time
by a Gaussian function if the errors ζi and ηi are Gaussian random vectors. Then, the
pdf of the model state’s error is determined only by its mean and covariance. The mean
of this pdf is the central forecast xi and the error covariance is obtained by the tangent
linear model Mi:

xi+1 = Mi (xi) (4.44)

Pi+1 = MiPiM
T
i + Qi (4.45)

The tangent linear model Mi is computed at the state xi.

Mi =

[
∂Mi

∂x

]
xi

(4.46)

The error forecast of the extended Kalman filter can be schematised as in figure 4.1.
Covariances are always positive defined matrices. The hypersurface in the state space of
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all states with the same probability is thus an ellipsoid for a Gaussian pdf. The shape
of this ellipsoid depends on the covariance matrix. The principal axes, for example, are
the eigenvectors of the covariance matrix. Figure 4.1 shows the ellipsoids representing the
error covariances Pi and Pi+1 of the states xi and xi+1. The vectors u1 and u2 are the
eigenvectors of Pi multiplied by the square root of the corresponding eigenvalues.

Pi = u1u
T
1 + u2u

T
2 (4.47)

The vectors u1 and u2 have therefore the magnitude of a typical error.

If the true system is not in the state xi, but in the state xi + u1, then at time ti+1, the
true system will be in the following state:

Mi(xi + u1) ∼ xi+1 + Miu1 (4.48)

provided that the model is perfect (Qi = 0). In the same way, the state xi + u2 maps on
the state xi+1 + Miu2 at time ti+1.

Every point x = xi + ζi on the ellipsoid centred at xi satisfies the following condition:

ζT
i P−1

i ζi = 1 (4.49)

The error ζi at time ti has grown or shrunken to ζi+1 = Miζi at time ti+1. The hyper-
surface representing the errors at ti+1 can be obtained by substituting ζi by M−1

i ζi+1 in
equation (4.49):

ζT
i+1

(
M−1

i

)T
P−1

i M−1
i ζi+1 = 1 (4.50)

ζT
i+1

(
MiPiM

T
i

)−1
ζT

i+1 = 1 (4.51)

The ellipsoid of the error at time ti+1 is therefore represented by the following covariance
matrix:

Pi+1 = MiPiM
T
i (4.52)

In fact, this is the forecast equation of the error covariance matrix (4.45) for a perfect
model.

In summary, the linear theory for error forecast can also be applied to weakly nonlinear
models. The mean of the Gaussian pdf is prediced by the full nonlinear model and the
error covariance by the tangent linear model. The criterion “weakly nonlinear” means
that the nonlinearities of the model for a typical error ε must be small. For instance, the
following approximation must be possible:

Mi(x + ε) ∼ Mi(x) + Miε (4.53)

This means that perturbations around the central forecast with the magnitude of a typical
error can be forecast by the tangent linear model. This requirement can fail either if model
is too nonlinear or if the errors are too large.
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Miu2

t

x1

xi

u1
xi+1

central forecast
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Figure 4.1: Forecast of the error covariance with the tangent linear model

4.2.4 The Lyapunov equation with a Reduced Rank error co-
variance

Error forecast with a square root representation

The error covariance matrices can also be expressed in terms of the following products:

Pi = SiSiT (4.54)

Qi = SQiSQ
T
i (4.55)

Pi = SiSi
T (4.56)

The representation of the error covariance in terms of its square root matrices has
the advantage that the underlying error covariance is by definition symmetric and
positive definite (Verlaan, 1998). But the main advantage is that with the square root
representation one can easily derive a reduced rank error forecast requiring much less
model integration than the Lyapunov equation (4.45).

The link between ensemble members and error covariance can be highlighted with this
formulation. The columns of Si can be interpreted as perturbations of the initial condition.
An ensemble generated by this perturbations would in fact have a covariance of Pi. A more
detailed description of the relation between an ensemble and the square root representation
is given in section 4.2.5. It is possible to express the Lyapunov equation using the square
root matrices:

S0 = Si (4.57)

S′i+1 =
(

MiSi SQi

)
(4.58)

Si+1 = S′i+1Ui (4.59)

In the operation (4.58) all rows of MiSi and SQi are concatenated to form an n × 2n
matrix. But only n of these errors vector are linearly independent. The 2n×n matrix Ui

(with UT
i Ui = I) is chosen in a way that the covariance is not modified:
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Si+1S
T
i+1 = S′i+1S

′
i+1

T
(4.60)

This is the forecast step of the SQRT filter. It involves as many model integrations
as linearly independent error vectors in Si. In the general case, it implies therefore n
model forecasts. The unacceptable numerical load can be decreased by approaching the
covariance matrix Pi by a reduced rank matrix.

Pi = SiSi
T + ξ (4.61)

where Si is now an n×r matrix with r << n. The error ξ is minimum under the spectral2

and Frobenius norm3 if the columns of Si are defined by the r dominant eigenvectors and
eigenvalues of Pi (Horn and Johnson, 1985, 1991). This error space reduction is performed
during the step (4.59). The covariance matrix is then limited only to the r dominant
eigenvectors and only r model integrations must be performed. In this procedure the
covariance matrix Pi do not need to be formed explicitly. All operations are done on the
square root matrices Si, SQi

and Si. Under the reduced rank approximation, these n× r
matrices are much smaller matrices than the n × n covariance matrices Pi, Qn and Pi.
This error forecast step is part of the Reduced Rank SQRT filter (RRSQRT filter).

Error forecast with a subspace representation

The traditional SEEK (Singular Evolutive Extended Kalman) filter, as introduced by
Pham et al. (1998), and the ESSE (Error Subspace Statistical Estimation) approach
(Lermusiaux, 1997; Lermusiaux and Robinson, 1999) are based on an eigenvector decom-
position of the initial error covariance matrix Pi.

Pi = LiP̃iLiT (4.62)

where P̃i is a diagonal n× n matrix containing the eigenvalues of Pi on its diagonal and
the columns of L are the corresponding eigenvectors of the initial covariance matrix. We
first consider the general case where all eigenvalues of Pi have arbitrary values. In a
second step, we will assume that some of the eigenvalues are negligible. This hypothesis
leads to a practical formulation of the error covariance forecast.

For a perfect model (Qi = 0), the Lyapunov equation yields:

L0 = Li (4.63)

Li+1 = MiLi (4.64)

2 The spectral norm ‖A‖2 of a real matrix A is the square root of the largest eigenvalue of AT A.
3 The Frobenius norm ‖A‖F of a m× n matrix is the square root of the sum of the absolute squares

of its elements:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|Aij |2
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The tangent linear model is applied to the columns of Li. It should be noted that they
are not necessarily orthonormal after the application of the linear model Mi. The error
covariance at any time ti is then given by

Pi = LiP̃
iLi

T (4.65)

For a model with dynamical noise, the error covariance matrix Qi must be projected onto
the error directions given by the columns of Li in order to obtain a formulation of the
error covariance similar to equation (4.65). If all columns are linearly independent, one
can show that:

Qi = Li

(
LT

i Li

)−1
LT

i QiLi

(
LT

i Li

)−1
LT

i (4.66)

The projection operator takes this complex expression since the columns are not or-
thonormal. If this is the case, the projection operator will take the more familiar form of
LiL

T
i , which has to be applied to the left and to the right of the model error covariance Qi.

The Lyapunov equation in the presence of model errors is then:

L0 = Li (4.67)

P̃0 = P̃i (4.68)

Li+1 = MiLi (4.69)

P̃i+1 = P̃i +
(
LT

i Li

)−1
LT

i QiLi

(
LT

i Li

)−1
(4.70)

However, this equation involves n integrations of the tangent linear model which is not
feasible for oceanographic or atmospheric models. The interest of the SEEK error forecast
step is the possibility of using a low rank approximation of the initial error covariance
matrix:

Pi ∼ LiP̃iLiT (4.71)

where P̃i is a diagonal r × r matrix containing only the r largest eigenvalues of Pi

on its diagonal. The columns of L are the corresponding eigenvectors. The same
approximation has been made for the RRSQRT error forecast. Finally, the equations
(4.67)-(4.70) are solved for this reduced error covariance matrix P̃i and the n×r matrix Li.

But SEEK and the RRSQRT error forecast handle the model error in a different way.
Instead of extending the error space by the error modes introduced by the dynamical
model, the SEEK “lengthens” the error vectors in order to take into account the model
error. It assumes therefore that the model error lies in the space formed by the r columns
of Li. In this case equation (4.66) also holds for Li containing only r error modes. Model
errors outside of the subspace are ignored. Since the error space evolves, different parts
of the model error covariance Qi are rejected.
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Pham et al. (1998) proposed also a simple parameterisation of Qi in terms of a “forgetting
factor” ρ. This approach assumes that the model error covariance is a fraction of the state
vector error covariance:

Qi =
1− ρ

ρ
LiP̃iL

T
i (4.72)

This parameterisation is consistent with the assumption that the model error lies in
the subspace spanned by the r columns of Li. In the context of data assimilation, an
adaptative and space dependent extension for the forgetting factor has been proposed by
Testut et al. (2003). In order to extent the error space, Brasseur et al. (1999) have used
an adaptive mechanism to add error modes based on the observation residuals.

The error forecast of the SEEK and the RRSQRT filters are based on the tangent linear
model. The derivation of an exact tangent linear model of ocean models is an extremely
complex task. Often the tangent linear model is approximated by the gradient:

[Mix]xi
=

1

ε
(Mi(xi + εx)−Mi(xi)) (4.73)

In theory ε should be as small as possible, but, in practice, better results are obtained
if the vector εx is of the order of magnitude of a typical error as it has been done in
Brasseur et al. (1999). The specification of the dynamical error covariance matrix Q is a
difficult task for the SEEK and the RRSQRT filter. This covariance contains for example
the effect of a heat flux error at time ti on the currents at time ti+1. Such indirect
repercussions are difficult to specify since they depend on the dynamics. The “forgetting
factor” approximation is therefore often used

Error forecast with a fixed subspace

Another approach to forecast the model’s error covariance consists in projecting the Lya-
punov equation into a fixed low dimensional space. The matrix formed by the basis vector
of this subspace is noted E. The empirical orthogonal functions of the model time vari-
ability were used by Cane et al. (1996) to specify this low dimensional subspace. The
error covariances Pi and Qi and the tangent linear model are projected in this subspace
by:

P̃i = EPiE
T (4.74)

M̃i = EMiE
T (4.75)

Q̃i = EQiE
T (4.76)

(4.77)

If a vector x belongs to the error subspace spanned by the columns of E, then we assume
that its forecast Mix still lies in this error space. This is a strong assumption for ocean
models where nonlinear interactions couple the different scales and modes. The time
evolution of the error covariance can then be expressed as:
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P̃i+1 = M̃iP̃iM̃
T
i + Q̃i (4.78)

The main difference between this approach and the RRSQRT and SEEK error forecast
is that the error subspace remains constant. However, the error covariance within this
space is allowed to change with time.

This approach reduces greatly the cost compared to the error propagation of the SEEK
or the RRSQRT filter if the reduced model M̃i can be maintained constant over a certain
time interval at least.

4.2.5 Relationship between the ensemble and reduced rank rep-
resentation

An ensemble is an approximation of the underlying probability density function. But
when we take into account only the two first moments of the pdf, i.e. the mean and the
covariance (and most analysis schemes do so), the ensemble can be treated as a reduced
rank approximation of the error covariance.

On the other hand, we will show that a reduced rank error covariance expressed in terms
of its square root or eigenvectors/eigenvalues can also be transformed into an ensemble
with the same covariance and a given mean. All this transformations imply matrix
manipulations of the order of the ensemble size or the rank of the covariance matrix and
one operation with a cost linear in n. The transition from one representation to another
is therefore easy to perform.

It is important to realise the direct link between the different representations in order to
take advantage of the different methods based either on the square root, eigendecomposi-
tion or ensemble representation. The ensemble representation allows stochastic forecasts
and, to some extend, nonlinear observation operators and analysis of non-Gaussian
variables by anamorphosis transform (Bertino et al., 2002). But an important ensemble
size is required. The convergence of the method as a function of the ensemble size N
is of the order of N−1/2. A square root factorisation or an eigendecomposition of the
covariance matrix converge substantially faster since it is based on a more clever choice
of the error subspace than simply random perturbations. But the framework of these
methods assumes linear or linearised models and observation operators.

From an ensemble to the square root of the error covariance

Pham (2001) derived these relationships and applied them in the SEIK filter which
combines the ensemble forecast with SEEK analysis.

The covariance P of an ensemble of states x(k) with k = 1, . . . , N is given by:
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P =
1

N − 1

N∑
k=1

(x(k) − x)(x(k) − x)T (4.79)

where x is the ensemble mean. We look now for a matrix square root S such that:

P = SST (4.80)

It is convenient to introduce the n×N matrix X whose columns are the ensemble states:

X =
(

x(1) . . . x(N)
)

(4.81)

Applied to this matrix X, the operator B subtracts the ensemble mean:

B = IN×N − 1

N
1N×N (4.82)

where IN×N is the N ×N identity matrix and 1N×N the N ×N matrix with all elements
equal to 1.

With these notations it is straightforward to find a square root representation of the
covariance, since:

P =
1

N − 1
XBBTXT (4.83)

A possible form of the matrix S is therefore:

S =
1√

N − 1
XB (4.84)

The columns of S are simply the difference between each ensemble member and the
ensemble mean scaled by 1√

N−1
. But all the columns of S are not linearly independent

since the sum of all columns is zero:

S1N×1 = 0 (4.85)

The rank of the covariance matrix obtained from N ensemble members is therefore N − 1
at most. Consequently, it should be possible to find an n × N − 1 matrix S satisfying
equation (4.80). Equation (4.85) also implies that we can express the column of S as a
linear combination of the other columns of S. The N -th column of S is the opposite of
the sum of all previous ones. The error space can hence be described by the N − 1 first
columns of S.

The last column of B is also just the opposite of the sum of all previous ones. Therefore,
we split the B matrix into two parts:

B =
(

T −T1N−1×1

)
= T

(
IN×N −1N×1

)
(4.86)

where T is the N ×N − 1 matrix holding the N − 1 first columns of B. The matrix T,
as introduced by Pham (2001) has the following form:
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T =

(
IN−1×N−1

01×N−1

)
− 1

N
1N×N−1 (4.87)

Using this T matrix, the error covariance P can be expressed as:

P =
1

N − 1
XT

(
IN×N −1N×1

)( IN×N

−11×N

)
TTXT (4.88)

=
1

N − 1
XT (IN−1×N−1 + 1N−1×N−1)T

TXT (4.89)

A slightly different expression is proposed by (Pham, 2001):

P =
1

N − 1
XT

(
TTT

)−1
TTXT (4.90)

But the derivations presented here show us that the inverse in this last equation can be
computed analytically. It seems that this property was not previously recognised. The
analytical inverse allows us to go further and to extend the results of Pham (2001):(

TTT
)−1

= IN−1×N−1 + 1N−1×N−1 (4.91)

In order to obtain an expression for S, we only need to factorise the rhs of (4.91) into its
square root matrix. This can also be done analytically by making the following ansatz :

IN−1×N−1 + 1N−1×N−1 = (IN−1×N−1 + α1N−1×N−1) (IN−1×N−1 + α1N−1×N−1)
T (4.92)

By solving a second order equation in α, one can find the values of α

α =
−1±

√
N

N − 1
(4.93)

Either the positive or the negative signs can be taken here. By combining equation (4.89)
and (4.92), one gets the final expression of S:

S =
1√

N − 1
XT (IN−1×N−1 + α1N−1×N−1) (4.94)

Finally, one can show that the columns of S can be obtained directly from the N − 1 first
ensemble members:

Sk =
1√

N − 1

(
x(k) − xm

)
with k = 1, . . . , N − 1 (4.95)

where the vector xm is obtained from the ensemble mean x and the Nth ensemble member
x(N) by:

xm = (1− α)x + αx(N) (4.96)

The number of operations of the approach based on (4.95) and (4.96) is only of the order
of nN . The direct solution (Pham, 2001) of the equation (4.90) to obtain a reduced rank
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representation requires O(nN2) operations.

This matrix S meets our initial requirement, i.e. it represents the same covariance than
the ensemble. Furthermore, it has the minimum number of columns for a maximum rank
ensemble. The näıve way of obtaining an S matrix with only N − 1 columns consisting
in simply ignoring the last column of S in (4.84) would lead to the correct error space
but to an underestimated covariance. The last term in expression (4.94) can therefore be
interpreted as a compensation factor necessary to obtain the right variance.

From the square root of the covariance to an ensemble

Knowing the ensemble mean and the square root of the covariance S, one can construct
an ensemble with the same covariance. Since the columns of S are related to the ensemble
perturbations, we can try the following ensemble:

x(k) = x +
√

N − 1Sk with k = 1, . . . , N − 1 (4.97)

The ensemble has indeed the right covariance around the given ensemble mean x, but
the mean state of all x(k) with k = 1, . . . , N − 1 is not necessary equal to x. By means of
equation (4.97) we have only constructed N − 1 ensemble members. If the Nth ensemble
member was chosen in such way that the ensemble had the right mean, the covariance
would be altered.

Using the same notation as in the previous section, we intend to construct an ensemble in
a similar way as equation (4.97) where the ensemble perturbations are linear combinations
of the columns of S (Pham, 2001).

X = x1N×N +
√

N − 1SΩT (4.98)

where Ω is an N ×N − 1 matrix which holds the coefficients of the linear combinations
of the columns of S. We choose this matrix such that the ensemble has the right mean
and covariance.

The covariance of this ensemble is given by:

P = SΩTΩST (4.99)

The columns of Ω must thus be normalised and orthogonal to each other such that
ΩTΩ = I. The mean of this ensemble can be obtained by multiplying equation (4.98) to
the right by 1

N
1N×1:

1

N
X1N×1 = x +

√
N − 1

N
SΩT1N×1 (4.100)

The columns of Ω must therefore also be orthogonal to the vector 1N×1. This is equivalent
to require that the columns of Ω have a zero mean. Hoteit et al. (2002) proposed a
method for generating a random Ω with the required properties. The generation of an
ensemble by (4.98) is also called second order exact sampling since the mean and the
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reduced rank error covariance are exactly represented by the ensemble.

The unscented transform is also a second order exact sampling technique transforming Sf

into an ensemble (Julier and Uhlmann, 1997; Verlaan and Heemink, 2001). The ensemble
contains 2r + 1 member and they are formed by:

x(0) = x (4.101)

x(k) = x +
√

r + κSk with k = 1, . . . , r (4.102)

x(k+r) = x−
√

r + κSk with k = 1, . . . , r (4.103)

where κ is an arbitrary parameter chosen in such a way that the ensemble forecast yields
relevant error modes. The following weight is attributed to each ensemble member:

w(0) =
κ

r + κ
(4.104)

w(k) =
1

2

1

r + κ
with k = 1, . . . , 2r (4.105)

The statistics of this ensemble obtained by the unscented transform are based on those
weights. The ensemble mean and covariance are thus weighted sums and one can show
that:

x =
2r∑

k=0

w(k)
(
x(k) − x

)
(4.106)

P = SST =
2r∑

k=0

w(k)
(
x(k) − x

) (
x(k) − x

)T
(4.107)

This method generates 2r+1 ensemble members. For an ensemble forecast, each member
must be integrated by the model. The ensemble size should therefore be as small as possi-
ble. The method of Pham (2001) which produces r+1 ensemble members is thus preferred.

Another method to create an ensemble is the Monte Carlo approach. It consists in gen-
erating the ensemble by:

x(k) = x + Sv(k) (4.108)

where the N−1×1 vectors v(k) are drawn randomly from the standard Gaussian distribu-
tion. The accuracy of the Monte Carlo sampling augments with increasing the ensemble
size. The difference between the ensemble mean and covariance and the x and SST is of
the order of N−1/2. In general large ensemble sizes are needed to obtain a representative
ensemble.
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Relationship between square root representation and eigenvector decomposi-
tion

The connection between a covariance matrix factorised in its square root matrix and
its eigenvector and eigenvalues is much easier to prove than the relationship with the
ensemble. We require that:

P = SST = LP̃LT (4.109)

where S and L are n× r matrices and P̃ is an r× r matrix. By a Cholesky decomposition
we factorise P̃ into P̃ = CCT . This decomposition is trivial when P̃ is diagonal. The
corresponding square root representation of the LP̃LT is given by:

S = LC (4.110)

We can obtain an eigenvector decomposition of P from a square root representation of
the error covariance by carrying out the following singular value decomposition:

S = UΣVT (4.111)

where Σ is a diagonal r × r matrix containing the singular values of S. U and V are
respectively the left and right singular vectors of S. An eigenvector decomposition can
therefore be obtained by:

P = SST = UΣ2UT (4.112)

All representations of the error covariance P have in common that they express P as
a reduced rank matrix. It is therefore not surprising that a relationship between those
representations exists. The rank of the error covariance matrix is actually a critical
parameter for data assimilation since the error associated to the directions perpendicular
to the error space is assumed to be zero. The prescribed rank should thus be as large as
possible.

4.3 Analysis

In the previous section, we have explained how a probabilistic forecast can be carried
out. Such a forecast allows us to determine the most likely ocean state and to assess the
confidence that we can have in this forecast. A probabilistic forecast can also quantify
the probability that a certain event occurs such as a “red tide” or an accumulation of
wastewater in a coastal region. Probabilistic forecasts are also increasingly desired by
a wide range of forecast users, especially in numerical weather prediction (e.g. Fritsch
et al., 1998).

The pdf of the model forecast is also necessary when the model results are combined with
observations. The observations can reduce the uncertainties of the model and limit, to
some extent, the error growth of an ocean model. The vector yo

i contains all observations
at time ti. Sometimes, the time index is dropped for simplicity if all quantities are taken



4.3. Analysis 75

at the same instance.

The number of observations m is generally much less than the dimension of the state space
n. The enhanced resolution of ocean models and their increasing complexity makes the
growth of the state space more rapid that the increased number of observations. Recent
progresses of the observation systems have also increased the number of observations to
assimilate into ocean models. However oceanographic measurements still remain costly
and are limited in number.

The pdf pxi
(x|yo

i ) of the ocean state given the observations yo
i at the time ti, can be

inferred from the Bayes formula:

pxi
(x|yo

i ) =
pyo

i
(yo

i |x)pxi
(x)∫

IRn pyo
i
(yo

i |x)pxi
(x)dx

(4.113)

In words, the probability that the system is in state x given the observations yo is pro-
portional to the probability that the system state is x without knowing the observations
times the probability that the observations are yo provided the ocean is in state x. The
denominator is a normalisation constant.

Often, the error of the observations is supposed to be Gaussian distributed and its covari-
ance is Ri:

pyo
i
(y) = (2π)−m/2(detRi)

−1/2 exp

(
−1

2
(y −Hi(x

t
i))

TR−1
i (y −Hi(x

t
i))

)
(4.114)

For the Bayes formula, we are not bothered with the true state of the system xt
i since it

requires only the probability of the observations given an ocean state x.

For systems with a few degrees of freedom, equations (4.22) and (4.113) form already a
probabilistic forecast system capable to deal with nonlinearities and arbitrarily distributed
errors and to assimilate observations.

pxa
0
(x) = pxi

(x) (4.115)

pxf
i+1

(x) =

∫
IRn

[∣∣∣∣∂Mi(x
′)

∂x′

∣∣∣∣−1

pxa
i
(x′)

]
x′=M−1

i (y)

pηi
(x− y)dy (4.116)

pxa
i+1

(x) =
pyo

i+1
(yo

i+1|x)pxf
i+1

(x)∫
IRn pyo

i+1
(yo

i+1|x)pxf
i+1

(x)dx
(4.117)

The probability density function is forecast until a set of observations becomes available.
The prior pdf is then modified according to the Bayes formula. This a posteriori pdf
is integrated in time until the next observations instant and so on. This method is not
practicable for large ocean system, but it can help to assess the performance of simplified
assimilation methods. They are often tested on small systems such as the Lorenz model
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(Lorenz, 1963). An exact solution for the nonlinear assimilation problem can be obtained
from equations (4.115)-(4.117).

4.3.1 Particle filter and Sequential Importance Resampling

In practice, the probability distribution is not represented as an n-dimensional function.
The Monte Carlo method describes the pdf by an ensemble of states. Initially, each
ensemble member is equally likely, but when the first observations come into play, it
must be realised that some ensemble members are closer to the observations than others.
According to the Bayes formula, for each ensemble member a posteriori probability w

(k)
i

can be obtained (van Leeuwen, 2003):

w
(k)
i =

pyo
i
(yo

i |x
f
i

(k)
)w

(k)
i−1∑N

k=1 pyo
i
(yo

i |x
f
i

(k)
)w

(k)
i−1

(4.118)

The weights are not modified during the prediction step and initially all weights are set
to 1/N . This method is called the Particle Filter. It has the merit of handling correctly
any nonlinearity. The particle filter is directly drawn from the Bayes formula without any
additional hypothesis. But obviously a certain number of ensemble members will have
very low weight and so very large ensembles are needed. This method closely resembles
to a simple trial and error approach where the model error is guessed. But the important
number of uncertain variables (error of initial conditions and dynamical error) makes
this method unfeasible for large systems.

It is natural that the members with a negligible weight should be excluded and no longer
integrated in time. But a mechanism is needed to create new ensemble members close
to the true state of the system in order that the number of ensemble member remains
constant.

A possible solution is Sequential Importance Resampling. This technique creates a new
ensemble of equally probable members representing the same pdf. In its simplest form, a
sequence of N integer numbers between 1 and N are chosen randomly. The probability
of the number k is the weight w(k).

The new ensemble will contain as many identical copies of the ensemble member k as
its number has been drawn. If the first ensemble member is for example two times more
probable than the second member, there will be in average twice as much copies of this
first ensemble member than of the second. The identical copies will progressively diverge
due to the stochastic noise introduced when integrating the ensemble forward in time.
Variants of the importance resampling procedure can be found in Doucet et al. (2001)
and van Leeuwen (2003).

The Guided Sequential Importance Resampling (GSIR) uses observations that are not yet
assimilated, to decimate irrelevant members at an earlier stage. All members which are not
consistent with future observations with a several times augmented error bar are rejected.
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The ensemble is therefore guided towards the observations. Van Leeuwen (2003) applied
the Guided Sequential Importance Resampling to a 5-layer quasi-geostrophic ocean model
of the Agulhas Current. He found that the ensemble mean of 32 member ensemble
assimilating SSH by the GSIR method produced similar results than a 1024 member
ensemble assimilating SSH by the SIR method.

4.3.2 What is the “best” estimation of the state vector?

It has been shown that the pdf of the system state can be represented efficiently either
by an ensemble or by a Gaussian pdf with a given mean and a reduced rank covariance.
Once the pdf of the system state vector taking into account the observations is known,
the filtering problem can be considered as solved.

For some applications a single estimate of the ocean state is needed and we want to provide
the “best” and “most accurate” estimation of the ocean state. However, the choice of the
optimality criterion is not unique. Different ways to define an optimality criterion exist:

• Maximum likelihood: The best estimate of the ocean is the state vector with the
highest probability. If the pdf is known as a function, then one needs to find
its global maximum. For an ensemble representation, the determination of the
most probable state is a non-trivial task since the pdf estimated by an ensemble
is a sum of Dirac’s delta functions. A possible solution could be based on the
cumulative density function which is a sum of Heaviside step functions. The most
probable estimate can then be the maximum gradient of a smoothed version of the
cumulative density function. The high dimensionality of this problem makes such
an approach inefficient and assimilation methods based on ensemble forecasts do
not use in practice this approach.

But since the exact shape of the pdf is in practice poorly known, the assumption
that the errors follow a Gaussian distribution is often used. The application of the
maximum likelihood criterion is straight forward. The pdfs of the a priori state
px(x) and of the observations pyo(yo|x) giving the state x are written as:

px(x) = C1 exp

(
−1

2
(x− xf )TPf−1

(x− xf )

)
(4.119)

pyo(yo|x) = C2 exp

(
−1

2
(yo −Hx)TR−1(yo −Hx)

)
(4.120)

where C1 and C2 are normalisation constants such that the integrated probability
is one. From the Bayes rule, the a posteriori pdf is then:

px(x|yo) = C3 exp

(
−1

2
(x− xf )TPf−1

(x− xf )− 1

2
(yo −Hx)TR−1(yo −Hx)

)
(4.121)
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In the maximum likelihood approach, the “best” state of the system is the most
probable one given the observations. The optimal state xa minimises the following
cost function:

J(x) =
(
x− xf

)T
Pf−1 (

x− xf
)

+ (Hx− yo)T R−1 (Hx− yo) (4.122)

This last equation is the classical least square error fit with the inverses of the error
covariances, which weight the model forecast and the observations.

• The error variance diminishing state: From the a posteriori pdf one can also define
the state with the lowest error variance as the optimal state.

Let x be an estimation of the unknown true state xt treated as a random vector
following the pdf obtained by the Bayes formula. The expected error variance of x
is given by:

E
[
‖x− xt‖2

]
= E

[
‖x− E

[
xt
]
−
(
xt − E

[
xt
])
‖2
]

(4.123)

= ‖x− E
[
xt
]
‖2 + E

[
‖xt − E

[
xt
]
‖2
]

(4.124)

The norm ‖·‖ implies a metric with a physical meaning. A more detailed discussion
of the role of this norm is given in chapter 6. This equation shows that the error
variance of any estimation is always greater or equal to the last term of equation
(4.124). This minimum is obtained if the estimation is the expected mean value of
the random vector following the pdf of equation (4.121).

In the variance diminishing approach, the “best” state is the mean of the a posteriori
pdf px(x|yo).

xa =

∫
IRn

x px(x|yo)dx (4.125)

• The unbiased linear combination of model and observations with the least error
variance. This estimator is also called the Best Linear Unbiased Estimator (BLUE)
introduced by Talagrand (1997). This criterion is also used for the previous estima-
tor. However, the BLUE estimator assumes a linear combination of observations
and model forecast, previously it was a consequence. The BLUE estimator is
defined independently of the Bayes formula and it makes no assumptions concerning
the distribution of the errors.

All unbiased linear combination of the model forecast xf and observations yo can
be written in the following way:

xa = xf + K
(
yo −Hxf

)
(4.126)
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In fact, any other linear combination would be biased. The “best” a posteriori state
in this approach is the estimator with the lowest total error variance:

J(K) = E
[
(xa − xt)TW(xa − xt)

]
(4.127)

This expression represents the mean squared “length” of the error vector in the
state space. The diagonal matrix W is the error norm in the state space. Even if
the a priori estimate xf and yo are non-Gaussian, the cost function J(K) implies
only their covariances:

J(K) = tr
(
W
(
(I−KH)Pf (I−KH)T + KRKT

))
(4.128)

The result of this minimisation is independent of the chosen norm.

Although these three approaches make different assumptions regarding the definition of
the best estimation, they lead to the same solution under the assumption of Gaussian
distributed errors and linear observation operators. The best a posteriori state xa and its
error covariance Pa are given by:

xa = xf + K
(
yo −Hxf

)
(4.129)

K = PfHT
(
HPfHT + R

)−1
(4.130)

Pa = Pf −KHPf (4.131)

However, the maximum likelihood and the variance diminishing approach can be
in theory easily extended to arbitrarily distributed errors and nonlinear observation
operators unlike the BLUE approach. A linear combination of observations and model
forecast is difficult to justify in the presence of a nonlinear observation operator.

The differences between the maximum likelihood and variance diminishing approaches
are illustrated in figure (4.2) where the extreme case of a bimodal pdf is shown. In this
example the errors of a priori state and the observations are Gaussian distributed. The
square of the system state variable is measured. The error variance of the a priori state
(xf = 0.1 and P f = 1) is high compared to the error variance of the observations (yo = 1
and R = 0.1). The a posteriori pdf is bimodal since the values near zero can be excluded
by the observations but the sign of the state variable cannot be determined neither by
the observations nor by the a priori state. The variance diminishing estimate (dot) has a
low probability compared to the maximum likelihood estimate (asterisk). But in average
an estimation based on the latter approach has a higher error than the estimation based
on the error variance criterion.

This discussion may seem somewhat academic since in most cases the observation
operator is linear and it is also very difficult to obtain accurate estimations of multimodal
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Figure 4.2: The pdf of an a posteriori state. The dot denotes the variance diminishing
state and the asterisk the maximum likelihood.

pdfs of realistic ocean systems. However, also in the context of purely observation
oriented techniques such as the computation of a climatology, the multimodal character
of the ocean has been recognised (Levitus, 2002). Should a climatology provide the
mean state of the ocean even if it corresponds, in some dynamically active regions, to
an unlikely state or should it provide the most likely regime, in which the ocean can be
found? In the latter approach the climatology mean RMS error would be higher. In
some cases, the application can give an answer to this question. It is preferable to choose
a dynamical consistent state of the system for a model initial condition provided by the
maximum likelihood approach. On the other hand, the state with the lowest mean RMS
error might be more appropriate for determining outliers from a set of observations.

The 4D-Var method and the Bayesian variant of the Kalman Smoother (Evensen and van
Leeuwen, 2000) are two assimilation methods which are not explained here. However,
they can be treated in the present framework if the vector x contains the state vector of
the system of all observation times. Both approaches give the same a posteriori evolution
of a linear system. In theory, they can also handle nonlinear dynamical models without
approximations, but the 4D-Var method seeks the most likely evolution of the system and
the Kalman Smoother the variance diminishing system trajectory.

4.3.3 The Kalman Filter

If the prior estimation of the ocean state and the observation error are normal distributed,
then the a posteriori pdf of the ocean state is also normal distributed and can completely
be described by its mean xa and covariance Pa. We also suppose that the observation
operator is linear and given by matrix H. According to the Kalman filter update, xa and
Pa are given by:
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xa = Pa
(
Pf−1

xf + HTR−1 yo
)

(4.132)

Pa−1 = Pf−1
+ HTR−1H (4.133)

The derivation of the Kalman filter analysis in the Bayesian approach can be found in
appendix D.

The matrix inversion Pf−1
in the state space is very difficult to perform. The Sherman-

Morrison-Woodbury formula (B.1) allows us to compute the analysis and its covariance
by a matrix inversion in observation space. The dimension of this space is generally much
less than the dimension of the state space.

xa = xf + K
(
yo −Hxf

)
(4.134)

K = PfHT
(
HPfHT + R

)−1
(4.135)

Pa = Pf −KHPf (4.136)

The difference between observations yo and its model counterpart Hxf is called the
innovation vector. This vector introduces into the model the information contained in
the observations, in order to improve the ocean state estimation. The innovation vector
is “amplified” or “reduced” by the matrix K called the Kalman gain. The Kalman gain
depends on the error covariances of the model forecast and the observations.

From equation (4.132) and (4.133) one can show that the Kalman gain can also be ex-
pressed in the following way:

K = PaHTR−1 (4.137)

This expression is particularly interesting for filtering algorithms computing the a
posteriori covariance Pa before the state xa.

The main assumption of the Kalman filter update is the Gaussian distribution of the
errors when the Kalman filter is derived from a Bayesian approach. But even for a
non-Gaussian distribution, acceptable results can be expected if the distribution has only
one maximum and if it is sufficiently symmetric. If this is not the case, unrealistic or
at least very improbable results can be obtained by the analysis, for example negative
values of a concentration of a given biological species or an unstable water column.
An ad hoc adjustment is then necessary (Brankart et al., 2003). Another approach
rendering these unphysical states impossible is the application of a so-called anamorphosis
transform (Bertino et al., 2002, 2003) which transforms these problematic variables by
a nonlinear function into Gaussian distributed variables. The Kalman filter is then ap-
plied to these latter variables before they are transformed back into the physical variables.

Another hypothesis is that the model results can be related linearly to the observations.
In oceanography, the model variables are, for the most part, directly observed and this
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hypothesis is not very restrictive.

Here we have derived the analysis of the Kalman filter in order to give the best
estimate provided the model forecast and the observations and their respective error
covariances at the given time ti. But the Kalman filter is more than this. In fact, the
sequential algorithm formed by equation (4.32)-(4.35) and (4.134)-(4.136) gives the best
estimate of the ocean taking all past observation into account (Gelb, 1974). Its solution
after assimilating the last observation is thus equal to the result of the non-sequential
methods (Kalman Smoother, 4D-Var and representer method), which use all observations.

The Kalman filter depends on the error covariance matrix of the model forecast Pf .
However, this matrix can never be formed explicitly for large system. Several alternative
ways to express the model uncertainties, and implicitly the error covariance, have
been proposed in the previous sections, namely the ensemble representation and the
eigenvector decomposition. The Kalman filter has to be adapted for each of these
formulations. The a posteriori state should be computed directly from the ensemble or
the eigenvector decomposition of Pf and the a posteriori error covariance Pa should be
expressed as an ensemble or in terms of an eigenvector decomposition rather than a huge
covariance matrix.

4.3.4 Stochastic Kalman Filter Analysis

The way the uncertainties of the observations is taken into account is not unique. The
stochastic Kalman filter analyses are based on an ensemble of observations. In the other
hand, deterministic Kalman filter analyses do not need perturbed observations.

The Ensemble Kalman filter analysis

Here we describe the traditional ensemble Kalman filter as proposed by Evensen (1994).
Several variants and modifications of the analysis scheme were proposed in the literature.
Some of them are discussed later on.

An ensemble contains the information of all statistical moments of the pdf. The ensem-
ble Kalman Filter (EnKF) analysis takes only the ensemble mean xf and the ensemble
covariance Pf

e into account:

xf =
1

N

N∑
k=1

xf (k)
(4.138)

Pf
e =

1

N − 1

N∑
k=1

(xf (k) − xf )(xf (k) − xf )T (4.139)

An ensemble of perturbed observations must also be created in order to take into account
their uncertainties (Burgers et al., 1998). The perturbation must follow the error statistics
given by the Gaussian pdf (4.114).
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yo(k) = yo + ε(k) (4.140)

The ensemble covariance Re of the observation perturbations is used as an approximation
of the error covariance matrix R.

Re =
1

N − 1

N∑
k=1

ε(k)ε(k)T (4.141)

Each ensemble member is updated by the following analysis equation:

xa(k) = xf (k)
+ K

(
yo(k) −Hxf (k)

)
(4.142)

where the Kalman gain has been computed by the ensemble covariance of xf (k)
and the

perturbed observations yo(k) (Evensen, 2003).

K = Pf
eH

T
(
HPf

eH
T + Re

)−1
(4.143)

The use of Re instead of the a priori more accurate R for the Kalman gain is not without
consequences.

The perturbations of the observations are necessary for the ensemble to have in average
the covariance given by equation (4.136). Otherwise the spread of the ensemble will
be underestimated (Burgers et al., 1998). The need of degrading the observations by
random noise is however an undesirable characteristic of the EnKF and several variants
have been proposed to avoid this.

The covariance matrix Pf
e and Re must never be formed explicitly. By definition, these

covariances can be written as the following products according to equation (4.84):

Pf
e = SfSf T

(4.144)

R = EET (4.145)

Since the covariance Re is the ensemble covariance of the perturbations, the matrix to
inverse in equation (4.143) is the sum of two matrices with ranks of N − 1 at most. Their
sum will therefore have a maximum rank of 2N−2. If the number of observations is higher
than 2N − 2 the matrix to be inverted HPf

eH + Re is singular. Generally the ensemble
size is of the order of 10 to 100 and the number of scalar observations in oceanography is
often of the order of 104 to 105. So what went wrong ? The reduced rank approximation
has lead us to a situation where the model and the observational constrains have become
incompatible. The matrix to invert is nothing more than the covariance matrix of the
innovation vector:
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E
[(

yo −Hxf
) (

yo −Hxf
)T]

= HSf (HSf )T + EET (4.146)

=
(

HSf E
)( (HSf )T

ET

)
(4.147)

where we have already used the low rank approximation of the covariance matrices.
This expression shows that we have made implicitly the assumption that the innovation
vector lies in a 2N − 2 dimensional subspace. If this is really the case, then the singular
matrix inversion can be avoided by an inversion in this 2N − 2 dimensional space. But
for independent observations this is generally not true.

Traditionally, the pseudoinverse4 of the innovation covariance matrix is computed by
performing the following eigenvalue value decomposition:

HPfHT + R = HSfHSf T
+ EET = ZΓZT (4.148)

where Z is an orthogonal matrix and Γ is diagonal. Once this eigenvector decomposition
is performed, the pseudoinverse of this matrix is simply given by:(

HSfHSf T
+ EET

)+

= ZΓ+ZT (4.149)

If the rank of the innovation covariance matrix is not full, the role of the pseudoinverse is
to filter out the components of the innovations outside the space defined by the columns
of HS and E. This makes the filtered innovation consistent with the reduced order
covariance matrix (4.147)

Matrices Z and Γ in (4.149) are generally computed by a singular value decomposition.
Its cost is of the order of m3 where m is the number of observations. This step might be
prohibitive for large observation vectors (Nerger et al., 2004a). From equation (4.147)
it can be seen that the singular value decomposition can also be done in a 2N − 2
dimensional space using the matrix properties derived in appendix C. This optimisation
seems not to be recognised by all authors.

The EnKF is extensively discussed in the literature and several problems were pointed
out:

4 The pseudoinverse A+ of a m × n real matrix A is the unique matrix which satisfies the following
criteria:

• (AA+)T = AA+ (That is, (AA+) is symmetric).

• (A+A)T = A+A

• AA+A = A

• A+AA+ = A+

If A = UΣVT is the singular value decomposition of A, then A+ = VΣ+UT . For a diagonal matrix
such as Σ, we get the pseudoinverse by inverting each non-zero element on the diagonal.
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• The problems of “in breeding” or “filter divergence” were identified by Houtekamer
and Mitchell (1998) and analysed by van Leeuwen (1999) and by Houtekamer
and Mitchell (1999). Even if the ensemble based covariances Pf

e and Re are
unbiased estimations of the true error covariances, there is no guarantee that after
the analysis, which is a nonlinear function of these covariances, the a posteriori
ensemble will be unbiased (Whitaker and Hamill, 2002). Van Leeuwen (1999)
has showed that the sampling error of Pf

e leads to a systematic underestimation
of the a posteriori error covariance. The sampling error of the observation error
covariance tends also to reduce the variance of the a posteriori ensemble.

The sampling error of the observation error covariance matrix can be avoided by
using a deterministic analysis scheme (see following section). Whitaker and Hamill
(2002) show the beneficial impact of the Ensemble Square Root Filter on the variance
of the a posteriori ensemble. Filter divergence might still occur with this analysis
method due to the sampling error of the a priori ensemble.

A very simple method applied by Anderson and Anderson (1999) consists in
increasing the ensemble spread by an empirical determined factor. The deviation
from the ensemble mean of each member is augmented by this inflation factor. The
forgetting factor of Pham (2001) does the same, but it is used in a different context.
Pham (2001) introduced the forgetting factor as a simple parameterisation of the
model error.

The double ensemble Kalman filter proposed by Houtekamer and Mitchell (1998)
uses two parallel ensemble Kalman filter. But the Kalman gain for the analysis is
obtained from the covariances based on the other ensemble. Van Leeuwen (1999)
has discussed how this method compensates biases associated with the nonlinearities
of the Kalman gain. The sampling error of the a priori ensemble tends now to
overestimate the ensemble spread.

• Kepert (2004) has showed that the ensemble Kalman filter algorithm described
by equations (4.140), (4.142), and (4.143) results in an a posteriori ensemble
with a rank lower than N − 1 if more than two measurement perturbations have
components in the space perpendicular to the space formed by the column of HSf .
For random perturbations this is generally the case.

This can be interpreted intuitively since with the ensemble error covariance Re, one
assumes that the observational error lies only in a subspace of N − 1 dimensions
at most. Along the directions outside this space, the observations are assumed to
be exact. The assimilation of an observation vector without an error along a given
direction will reduce the variance of the ensemble in this direction to zero after the
analysis. In particular, if the model error direction at observation location HSf

lies outside the space formed by the columns of E, this error mode will no longer
be present in the ensemble after the analysis.



86 Chapter 4. Sequential assimilation methods

Kepert (2004) suggested taking a full rank measurement error covariance to cope
with this rank loss. Evensen (2004) replied that this rank issue could be avoided by
sampling the measurement perturbation inside the space of HSf . However, general
error observation covariance matrix cannot be decomposed into a covariance matrix
lying inside of the space defined by HSf and into the perpendicular space. The
new algorithm needs therefore a new hypothesis whose effect is unclear.

In any circumstances, an ensemble based representation of R is inaccurate and large
sampling errors would occur for weakly or not correlated observations. The use of
the full R instead of its ensemble representation solves the problem of sampling error
associated to the observations and also reduces “the filter divergence” problem. The
only advantage of the ensemble based representation of Re is the fact that it is very
efficient if the singular vector decomposition of the innovation covariance matrix is
done in the N − 2 dimensional space formed by the perturbations.

The stochastic ESSE filter

Lermusiaux and Robinson (1999) propose two analysis schemes of the Error Subspace
Statistical Estimation (ESSE) approach. Here we describe the variant using perturbed ob-
servations for the ensemble update (Lermusiaux, 1997; Lermusiaux and Robinson, 1999).
From equation (4.134), it can be shown that the a posteriori error covariance is given by:

Pa = (I−KH)Pf (I−KH)T + KRKT (4.150)

The first term takes into account the uncertainty due to the a priori state and the second
is due to the uncertainties of the observations. If the a priori ensemble perturbations Sf

are updated in the following way,

Sa = (I−KH)Sf (4.151)

the resulting ensemble would have too low spread since the uncertainties due to the
observations are neglected. This is the reason why Lermusiaux and Robinson (1999)
introduce an additional stochastic term in the ensemble perturbation update as in the
Ensemble Kalman filter:

Sa = (I−KH)Sf + KE (4.152)

where the columns of E are again random perturbations drawn from a Gaussian pdf with
zero mean and covariance given by R multiplied by 1√

N−1
as in the EnKF. A similar

update equation can be obtained by subtracting the ensemble mean from (4.142). But
here the full observation error covariance is used for the Kalman gain K. The ESSE
scheme does not work directly with the ensemble perturbation but with the singular
vector decomposition of these perturbations.

Sf,a = Uf,aΣf,aVf,aT
(4.153)



4.3. Analysis 87

From (4.152) the analysis update of the right and left singular vectors and for the singular
values can be derived. The a priori state is obtained by the standard Kalman filer analysis
(4.134)-(4.136) without perturbed observations.

4.3.5 Deterministic Kalman filter analysis

If unperturbed observations are used during the analysis step (4.142), the resulting ensem-
ble would have a too low variance, compared to the Kalman filter in the case of Gaussian
statistics (Burgers et al., 1998). But the need of perturbed observations is not a desirable
feature since the analysis is not fed with the true observations but only with observations
degraded by an artificial noise. For the assimilation of perturbed observations, generally
larger ensemble sizes are needed (Nerger et al., 2004a,b). The next class of Kalman filter
analysis are deterministic in the sense that no Monte Carlo approach for the observation
uncertainty is needed.

The SESAM and the Ensemble Transform Kalman filter analysis

Practical methods for forecasting the model error use an ensemble approach or a leading
error mode representation of the error space. In most methods presented here the forecast
error covariance can be expressed in terms of its square root matrices (Tippett et al., 2003):

Pf = SfSf T
(4.154)

The a posteriori error covariance matrix Pa can also be expressed in terms of square
roots:

Pa = SaSaT (4.155)

= Sf
(
I− (HSf )T

(
(HSf )T (HSf ) + R

)−1
HSf

)
Sf T

(4.156)

The square root of the inner matrix can be computed by an eigenvector-decomposition:

(HSf )TR−1(HSf ) = ÛT Λ̂Û (4.157)

or by a singular value decomposition of R−1/2(HSf ). From equation (4.157), the Kalman
gain can then be written as:

K = Sf (HSf )T
(
(HSf )(HSf )T + R

)−1
(4.158)

= Sf
(
I + (HSf )TR−1(HSf )

)−1
(HSf )TR−1 (4.159)

= SfÛ(I + Λ̂)−1ÛT (HSf )TR−1 (4.160)

For equation (4.159), the Sherman-Morrison-Woodbury formula (B.2) was used to trans-
form the inverse in the observation space to an inverse in the error subspace. If we insert
the Kalman gain (4.160) in equation (4.134), we obtain the expression of the a posteriori
state:
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xa = xf + SfÛ(I + Λ̂)−1ÛT (HSf )TR−1
(
yo −Hxf

)
(4.161)

This equation shows that the correction introduced by the analysis is a linear combination
of the columns of Sf . This property is common to all assimilation methods based on a
reduced rank error covariance of the model state. This approximation assumes that the
model is perfect along the directions not included in the error space defined by the error
covariance. It is therefore not surprising that the correction term can only lie inside the
space formed by the columns of Sf .

There is an interesting link between the eigenvalues of Λ̂ and the controllability of a
system. The magnitude of the eigenvalue in Λ̂ indicates which model error can be reduced
with the given observations and which can not. For instance, if the eigenvector u0 of the
rhs of (4.157) has a zero eigenvalue then:

(HSfu0)
TR−1(HSfu0) = 0 (4.162)

Since the norm of the vector R−1/2HSfu0 is zero, the vector itself must be zero:

HSfu0 = 0 (4.163)

The model error Sfu0 has no signature in the observed part of the model state vector.
It is therefore not possible for the observations to give any information reducing this
error. The model is not controllable along this direction in the error space by the given
observations. One can also show that the analysis increment xf − xa has no contribution
along the unobservable error direction Sfu0. Although the error space describes only the
model and it is independent of the observations, it should for efficiency reasons contain
only error modes that can be constrained by the observations. The magnitude of the
eigenvalues Λ̂ can help to identify uncontrollable error modes. On the other hand, it can
also help to define the observation strategy (the operator H) to reduce the error along a
given error mode corresponding to a specific event, e.g. an eddy detaching form a current.

Finally the a posteriori error covariance can also easily be obtained by

Pa = SaSaT (4.164)

= SfÛ(I + Λ̂)−1ÛTSf T
(4.165)

The error subspace after the analysis is then given by

Sa = SfÛ(I + Λ̂)−1/2 (4.166)

In this algorithm the error covariance matrices Pf and Pa must never be formed
explicitly. All operations involve only the square root matrices Sf and Sa.

This method is also used for the SEEK filter as it is implemented in the SESAM (An
integrated System of Sequential Assimilation Modules) package (Testut et al., 2002).
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This approach is also identical to the analysis step of Ensemble Transform Kalman Filter
(Bishop et al., 2001). For the assimilation experiments realised in the present work, the
analysis is based on equations (4.161) and (4.166).

It is important to note that the matrix Sa is not uniquely defined. The application of any
m × m orthogonal matrix to the right of (4.166) would yield another a posteriori error
space describing the same error covariance.

Sa = SfÛ(I + Λ̂)−1/2U′ (4.167)

The model error forecast based on the tangent linear model is also invariant with respect
to an m by m orthogonal matrix U′.

The need of a tangent linear model for the error modes is avoided by transforming Sa

into an ensemble (e.g. Pham, 2001). But for nonlinear systems the forecast ensemble
mean and covariance will depend on U′.

Numerous filtering algorithms based on the decomposition (4.154) exist and they are
reviewed by Tippett et al. (2003). They are all formally equivalent and give the same Sa

up to an arbitrary rotation matrix. For nonlinear systems they can produce in practice
different results, but a priori it is not possible to determine which method produces the
best results.

While the error covariance is not modified by the application of U′, higher moments
of the ensemble are modified. These higher moments reflect e.g. that unstable water
columns are improbable and negative concentrations even impossible. Ott et al. (2004)
have proposed an interesting method for determining an m ×m orthogonal matrix such
that the a posteriori ensemble is as close as possible to the initial ensemble and still
satisfying equation (4.155).

The Ensemble Adjustment Kalman filter

Anderson (2001) has proposed the Ensemble Adjustment Kalman filter in order to use
a Monte Carlo method for the ensemble forecast but a deterministic analysis scheme
for the update. The a priori error space Sf is adjusted by an operator in such way
that Sa = ASf has the right covariance. This operator is obtained by rotating the error
space into the space formed by the eigenvector of Pf . This eigenvectors can be obtained
directly by a singular value decomposition of the matrix Sf .

According to Anderson (2001), the a posteriori state xa is obtained by equation (4.132).
The eigenvector decomposition of Pf is then used to compute its inverse. However the
inverse should be treated as pseudo-inverse since the ensemble size is much less than the
state space dimension. Alternatively, the a posteriori state can directly be computed by
(4.137). No pseudo-inverse is needed in this case.
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Reduced Rank Square root Kalman filter (RRSQRT filter)

If the observations are not correlated, then each observation can be assimilated serially.
The square root filter, introduced in oceanography by Verlaan and Heemink (1997), com-
putes the Kalman gain of a given observation directly by equation (4.135). The inversion
involves only scalar quantities because it is performed in the observation space. The a
posteriori error space can be obtained by:

Sa = Sf
(
I− β(HSf )T (HSf )

)
(4.168)

where the scalar β is chosen in order that the a posteriori error covariance SaSaT has the
covariance predicted by the Kalman filter theory. Therefore, β has the following value:

β = (HSf )T (HSf ) + R +
√

((HSf )T (HSf ) + R)R (4.169)

This expression involves essentially only scalar quantities. For correlated observations,
the observations have to be transformed first into a space where the observation error
covariance matrix is diagonal. The multiplication of the observation vector and the
observation operator by R−1/2 transforms the error covariance matrix into the identity
matrix. Each of those new observations can then be assimilated sequentially.

Whitaker and Hamill (2002) proposed a similar algorithm for assimilating uncorrelated
observations serially called the Ensemble Square root Kalman filter. Tippett et al. (2003)
showed that this method and the scheme derived by Whitaker and Hamill (2002) yield
the same a posteriori error covariance than the update of equation (4.168).

In this method, it is particularly easy to assess the impact of each observation on the a
posteriori state and covariance. Hamill and Snyder (2000) used this property to limit the
correction of an observation to a given influence circle. In this approach unrealistic long
range correlation introduced by the reduced rank approximation are suppressed.

The SEEK filter analysis

Instead of expressing the covariance matrix in terms of its square root matrices, the
covariance can also be projected into a subspace:

Pf = LP̃fLT (4.170)

The subspace is spanned by the columns of L. A full rank covariance matrix cannot
be projected into a low dimension subspace without losing small scale structures in
the initial covariance matrix. However, it can be shown that the subspace defined by
the dominant eigenvectors of Pf is the closest approximation, given a fixed subspace
dimension of Pf in terms of the spectral and Frobenius norm (Horn and Johnson, 1985,
1991).

There is however a clear link between the square root decomposition (4.154) and
the eigenvector decomposition (4.170). The crucial point of this factorisation is the
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assumption that the covariance matrix can be approximated by a low rank matrix.

An important aspect here is that the a posteriori error covariance matrix Pa can be
expressed in the same subspace without any other approximation (Pham et al., 1998):

Pa = LP̃aLT (4.171)

The analysis step can therefore be computed in the subspace defined by L and then
transformed back into the physical state space.

The base of the initial error space is generally orthonormal. But the columns of L are
generally no longer perpendicular after the application of the tangent linear model to
the vectors of this basis. A decomposition into the eigenvectors of Pf is generally not
needed for the analysis. The space spanned by the L should contain the most dominant
eigenvectors of Pf , but they are not necessary equal to them.

The analysis of the SEEK filter, as proposed by Pham et al. (1998), used traditionally
an eigenvector decomposition (4.170). The a posteriori error covariance is computed by
projecting equation (4.133) onto the subspace defined by the columns of L.

P̃
a−1

= P̃
f−1

+ (HL)TR−1(HL) (4.172)

Except for the inverse of the observation error covariance, the inverses have to be
computed in the error subspace. The resulting a posteriori error covariance expressed
in the error subspace P̃a and the columns of L are not necessary the eigenvalues and
eigenvectors of the a posteriori error covariance Pa.

The a posteriori state can be obtained directly from (4.134) by using the Kalman gain
given by equation (4.137):

xa = xf + LP̃a(HL)TR−1
(
yo −Hxf

)
(4.173)

The SEIK (The Singular Evolutive Interpolated Kalman) filter (Pham, 2001) relies on
the same analysis scheme but it is based on an ensemble forecast in order to predict the
error covariance due to the uncertain initial condition. The model error covariance Qi is
projected onto this error space and introduced as in the SEEK filter. Numerous variants
of the SEIK filter use the same analysis scheme but different error forecast methods have
been proposed (Hoteit et al., 2002).

The ESSE analysis scheme

Besides the stochastic ESSE analysis scheme, there exists also a deterministic variant of
the ESSE analysis (Lermusiaux, 1997; Lermusiaux and Robinson, 1999).

Starting from the eigenvector decomposition (4.170), the Kalman gain has the following
form:
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K = LP̃f (HL)T
[
(HL)P̃f (HL)T + R

]−1

(4.174)

As mentioned before, if the Kalman gain is applied to an innovation vector yo−Hxf , the
resulting correction lies inside the error subspace. The amplitudes of these corrections
along the error subspace base can be obtained by applying the matrix K̃ to the innovation
vector if K̃ is defined by:

K̃ = P̃f (HL)T
[
(HL)P̃f (HL)T + R

]−1

(4.175)

K = LK̃ (4.176)

K̃ can be viewed therefore as the Kalman gain expressed in the error subspace, which also
allows the computation of the a posteriori error covariance. The updated equation of the
error covariance (4.136) is projected into the error subspace formed by the columns of L.

P̃a = P̃f − K̃(HL)P̃f (4.177)

As for the SEEK filter, the resulting a posteriori error covariance expressed in the error
subspace P̃a is generally not diagonal. By an eigenvector decomposition of P̃a, one can
obtain the necessary rotation in the error subspace such that Pa is decomposed into its
eigenvectors and eigenvalues. The advantage of expressing Pa this way, is that error
directions with too small variance can be neglected. The ESSE scheme can also increase
the error subspace dimension by means of a procedure called the “adaptive learning”.
Based on the observation residuals, the missing directions in the error space are “guessed”
by some empirical assumptions (Lermusiaux and Robinson, 1999)

4.4 Summary of reduced rank Kalman filters
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4.5 Description of the assimilation scheme imple-

mented to the system of nested models

An assimilation strategy based on the combination of the SEEK filter, RRSQRT filter,
ESSE and EnKF has been adopted. Each of these methods presents advantages and
drawbacks. But the different steps of these algorithms can be exchanged since all are
based on the Kalman filter and on the reduced rank approximation of the error covariance
matrix Pf .

4.5.1 Estimation of error covariance of the model forecast

The error covariance Pf is estimated as in the EnKF and the ESSE. The specification
of the model error is particularly straightforward for these methods. Once the variables
causing the main errors are identified, an ensemble of these variables reflecting the
uncertainties attributed to them is created. The ensemble of model forecast obtained
with the perturbed variables represents thus the error of the model forecast. In this
stochastic forecast, the full nonlinear model is used.

4.5.2 Dominant error modes

The error space is obtained from an ensemble simulation and contains thus redundant
error modes. Like in the ESSE, the error space is reduced to the leading EOFs. The EOF
analysis provides a set of orthonormal basis functions of the error space ordered by their
importance i.e. , the variance of the ensemble along the basis function.

4.5.3 Analysis

The analysis schemes of the SEEK and the RRSQRT filters are particularly efficient
since they do not require observation perturbations. They provide the exact solution
of the Kalman filter analysis to which the EnKF analysis converges for an infinitely
large ensemble size. In particular, when the observation error covariance is diagonal, the
analysis requires only a number of operations linear in m.

The representation of the error covariance in terms of square root matrices is borrowed
from the RRSQRT filter. The error modes have the same physical units as the state
vector. The square root matrices are thus easier to interpret since their magnitude rep-
resents “typical” errors. However, as in the SEEK filter, all observations are assimilated
simultaneously.

4.5.4 Simplification of the error forecast

From a computational point of view, the most expensive part of the Kalman filter assim-
ilation schemes is the forecast of the error covariance, since it implies r or r + 1 model
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integrations, where r is the rank of the error covariance matrix. A single two-month
integration of the Ligurian Sea nesting system takes about 2.5 days CPU time5. Even
small ensembles of O(10) are not feasible for the complete nesting. Thus the error space
describing the forecast error is only computed once and finally it is maintained constant
over the different assimilation cycles. More details on generation of the ensemble are given
in section 6.1.

5The complete nesting system is distributed on six 400 MHz processors of a SGI Origin 3800.



Chapter 5

Programming aspects

In this chapter, some programming aspects of the developed assimilation package and the
model are given. It should give an overview of their capabilities and limits. This chapter
is not necessary of the understanding for the remaining work. Readers not interested
in the computing aspects can skip this chapter. But in data assimilation, programming
aspects can be important for practical implementation since the computational costs of
the assimilation methods are often a limiting factor. These limitations must be taken into
account in the development of an assimilation package.
aspect

Furthermore, there is a growing demand for relocatable model implementations. In many
situations such as the dispersion of oil or another pollutant, marine construction or ques-
tions related to marine transport and safety, models need to be rapidly implemented. The
Harvard Ocean Prediction System is an example of a relocatable model implementation
(Robinson and Sellschopp, 2002). This kind of applications has also consequences for the
development of a modelling and data assimilation system.

5.1 The GHER model

5.1.1 Relocatable model implementation

The model implementation consists in a series of steps with little or no intervention
of the modeller. It is therefore possible to automate an important part of the model
implementation and thus to accelerate the model set-up. The implementation procedure
relies on a database constituted by the MEDAR/Medatlas and MODB Climatology (Rixen
et al., 2001b; Brasseur et al., 1996), a 1/60◦ bathymetry of the Mediterranean Sea and
a 1/4◦ typical winter initial conditions obtained from a 10 years model spin-up (Beckers
et al., 2002). From these data sets, a nested model implementation with an arbitrary
number of nesting levels at any location of the Mediterranean Sea can be built in an
automated way. The only parameter that has to be specified is the number of nesting
levels, the position, size and resolution of each nested model grid.

97
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The model bathymetry

The model bathymetry is obtained from 1/60◦ bathymetry of the Mediterranean Sea. If
the model resolution is lower than 1/60◦, bathymetry is averaged over all grid-points of
the 1/60◦ bathymetry falling within the model grid cell. If the model resolution is higher
than 1/60◦, the bathymetry is interpolated linearly (this functionality was added by L.
Vandenbulcke, personal communication). For models with a sigma coordinate, the depth
of the water column must be greater than a given threshold and smaller depths should
be avoided for numerical stability. The GHER model uses a double-sigma coordinate and
consequently two ranges of depth are not allowed. The depth must be greater than 30 m
and it should not be between 170 and 300 m for the vertical discretisation adopted in the
Mediterranean Sea (Beckers et al., 2002). For each grid point with a depth outside the
range of stability, the bathymetry is put to the closest permitted value. It is also possible
to adjust the bathymetry at specific locations in order to avoid, for example, disconnected
sea points.

The climatology

The monthly MEDAR or MODB temperature and salinity climatology is automatically
interpolated to the model grids of the nesting system. These fields can be used to correct
the surface heat and freshwater flux by relaxing the model SST and SSS towards the
climatological values. It is also possible to nudge the temperature and salinity fields in
depth towards the climatology. This is useful for example at open boundaries.

The initial conditions

As stated earlier, typical initial conditions for a 1 January are also interpolated to the
model grid. In order to obtain initial conditions for a given date, the model needs to
be spun-up with realistic forcings and possibly with data assimilation. The spin-up can
also start from climatological temperature and salinity. Utilities exist for computing the
surface elevation (based on a no-motion-level assumption) and for the calculation the
geostrophic velocity.

Remaining implementation steps

Of course, the automation has to stop somewhere. The atmospheric forcings are
not included in this implementation procedure since they are not part of the
database. The size of a database containing the atmospheric fields of several years
would be too important. Nevertheless, a specialised ftp-script was written to down-
load and to convert either the NCEP Reanalysis forcings from the NCEP site
(http://www.cdc.noaa.gov/ncep reanalysis/) or the ECMWF forcings fields from the
MFSTEP server (ftp://data.bo.ingv.it).

Model parameters such as the time step and diffusion coefficient have to be specified.
Otherwise it would make the modeller redundant.
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5.1.2 The Ligurian Sea model implementation

The oceanographic aspects of the Ligurian Sea model implementation were explained in
chapter 3. Figure 5.1 shows the two successive grid refinements carried out in this model
setup. The model resolution is first refined by a factor of 5 and then by a factor of 3.

Data flow

Figure 5.2 shows the interdependence of the three models of the nesting system. Only
the models of two successive nesting levels communicate with each other. They exchange
boundary conditions and feedback.

The dynamical equations are integrated in a synchronous way with the same time
step. For each dynamical equation, the exchanges shown in figure 5.2 are realised.
First, the necessary boundary conditions for a given variable are interpolated from the
results of the next coarser nesting level. The Mediterranean Sea model provides the
boundary conditions for the Liguro-Provançal Basin and then the Liguro-Provençal Basin
model provides the boundary conditions for the Ligurian Sea model. The dynamical
equation is then integrated one time step forward. Each nested model average its
results to the resolution of its parent model. The highest resolution model begins with
this feedback procedure. This averaged field of the Ligurian Sea model is sent back
to the Liguro-Provençal Basin model. Model results of the Liguro-Provençal Basin
in the overlapping domain are replaced by these values. Then, the Liguro-Provençal
Basin model sends the average values to the Mediterranean Sea model. The feedback
cascades thus information from the highest resolution grid to the coarsest resolution grid.
The values of the Ligurian Sea model are thus found also in the Mediterranean Sea model.

The model integrates by mode-splitting the barotropic mode with a much smaller time
step than the baroclinic modes. The boundary conditions and feedback are also exchanged
between the barotropic time steps. During the integration of the barotropic flow, the data
exchange is therefore particularly high.

Model parallelisation

The GHER model can run in parallel on different CPUs (Central Processing Unit) using
a domain decomposition. The model domain is divided statically into several subdomains
with the same resolution and with a similar number of sea points. The exchange between
the different domains is realised by the message-passing library PVM (Parallel Virtual
Machine). But this form of parallelisation was not used in the present work.

Each model of the nesting system is a separate executable. The transfer of the boundary
conditions and the feedback is also realised by PVM (figure 5.3). The nesting is also
a form of model parallelisation since all models of the nesting system run on different
processors.
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Mediterranean Sea 15’ resolution (22 x 28 km)

Liguro-Provençal Basin
3’ resolution (4 x 6 km)

Ligurian Sea
1/60◦ resolution (1.5 x 1.9 km)

Figure 5.1: The three domains of the Ligurian Sea implementation. The colour indicates
the depth.

Mediterranean Sea Liguro-Provençal Basin Ligurian Sea
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Figure 5.2: The data flow between the three models. “B.C.” stands for boundary condi-
tions and “FB” for feedback.
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cpu 1

Med.

cpu 2

L.-P.

cpu 3 cpu 4 cpu 5

L.S.1 L.S.2 L.S.3

OpenMP

� -

PVM

� -

PVM

Figure 5.3: Parallelisation in the system of nested models. Such approaches are also
known as dual-level parallelisation (Luong et al., 2004).

Model Nb. of Sea points

Mediterranean Sea (Med.) 120374
Liguro-Provençal Basin (L.-P.) 151596

Ligurian Sea (L. S.) 477364

Table 5.1: Comparison of the number of sea points between the different models

Load balance of the nested models is of major concern since the grids of the nesting
system have a different spatial resolution and a different number of grid points (table
5.1). The nesting mode is presently only to a limited extent compatible with the domain
decomposition since only the coarsest level of the nesting system can be parallelised
by the domain decomposition. But in a typical nesting implementation the fine grid
model has the most grid points. An efficient nesting set-up would require that the fine
resolution grid model is further parallelised in order to balance the execution speed of
each model.

To overcome this problem, the model code was parallelised with OpenMP in a way that
it can be used at all levels of the nested models. The main drawback of OpenMP is the
need for a shared memory computer-architecture. OpenMP code cannot be ported, for
example, on clusters, which have gained popularity due to their low cost.

On the other hand, OpenMP parallelisation requires less programming effort than a
message passing parallelisation and it can be done incrementally: starting from a low
level, the parallel region can progressively be extended to the entire program.

Each model of the nesting system can run with a different number of CPUs with minimal
modifications. The Ligurian Sea model, which has the highest number of sea points,
is run therefore with three or four CPUs as shown in figure 5.3. Depending on the
CPU time availability, the Mediterranean Sea model can be run on two CPUs, the
Liguro-Provençal Basin model also on two CPUs and the Ligurian Sea model on six CPUs.

To change the number of processors, the PVM domain decomposition would require a
complete re-implementation since each domain has its specialised executable. Of course,
a multiple data/single program (MDSP) approach allowing a straight forward change
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of the number of CPUs is also possible with a message passing library such as PVM or
MPI. Such strategies are easier to realise with dynamic allocation, which is possible in
Fortran 90.

The OpenMP parallelisation is done in such a way that a team of threads running on
different CPUs is created at the beginning of the main time loop. This parallel region is
only closed at the end of the model run. The work of the loops is then shared among
the team of threads. For nested loops, the outermost loop is parallelised, which is in
most cases the vertical or the zonal direction. A rearrangement of some variables is
necessary for rendering each loop-iteration independent of the others. The parallelisation
was validated by verifying that the model produces the same results up to the last digit
for different number of CPUs.

Table 5.2 shows the performance of the OpenMP parallelisation for different numbers of
CPUs without model nesting. The model covers the Mediterranean Sea with a unique
grid of 1/4◦ resolution. The barotropic time step is 30 s and the baroclinic time step is
1800 s. The model simulation is done for one month.

The speed-up of a program is determined by how much faster it is on p processors than
on one processor. Therefore, the speed-up S(p) of a program on p processors is the ratio
of the execution time obtained with one processor t(1) and the execution time with p
processors t(p):

S(p) =
t(1)

t(p)
(5.1)

Generally, the speed-up of a program on p CPUs is lesser or equal than p. The speed-up
can be greater than this limit due to the effect of the cache architecture, for example.
But in real programs, the communication overhead between the processes slows down
the execution time and the speed-up is less than the number of CPUs.

The efficiency E(p) of a parallel code running on p processors is the ratio between the
speed-up and the number of processors p:

E(p) =
S(p)

p
(5.2)

The efficiency measures how close is the speed-up to the theoretical limit.

The efficiency of the parallelisation obtained here is acceptable for a low number of
CPUs. For higher number of CPUs the acceleration of the program becomes smaller
and smaller. This is due to the parallelisation overhead. At several stages, there are
implicit or explicit barriers in the code. This barrier can only be passed if all threads
have reached this barrier. These barriers ensure that all the work before the barrier has
been completed. Some future optimisation can be done to verify the necessity of each
barrier.
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Number of
CPUs

Execution
time (s)

Speed-up Efficiency

1 8306.89 1.00 1.00

2 4978.02 1.66 0.83

4 3272.34 2.53 0.63

8 2146.16 3.87 0.48

Table 5.2: The execution time, seed-up and efficiency of the Mediterranean Model with
different number of CPUs.

As mentioned earlier, the parallel region has been extended to the entire time loop. Only
a single fork1 of processes at the beginning of the time loop is done. Only parts of the
model code without computations such as input and output have not been parallelised.
The fraction of unparallelised code is therefore very low and significant improvement due
parallelisation of these parts is not expected.

5.1.3 Algerian Current

By presenting only a single nesting implementation, one cannot claim that a model is
really relocatable. The nesting system has therefore been applied to another domain.
The Algerian Sea was chosen for the nesting implementation. The Algerian Current is
formed by Modified Atlantic Water (MAW). This water mass enters the Mediterranean
Sea by the Strait of Gibraltar and follows the Moroccan, Algerian and Tunisian coast.
This meandering current is dynamically very active and often eddies are detached from
the Algerian Current. The dynamics of this region is therefore very different from the
dynamics of the Ligurian Sea.

The coarse model of the Mediterranean Sea has, as before, a resolution of 1/4◦. The grid
of the Algerian Current is refined by a factor of 5. The domain of this model is shown in
figure 5.4. The time necessary to implement a model can be a critical factor. The model
implementation, starting with the choice of the model domain to getting the first results,
has been done in two days. Figure 5.5 shows the SST of the model after an integration
of one month starting from the 1 January 2000. Some discrepancies are apparent when
comparing the model with the observed SST. In particular, the North-South gradient
is less pronounced in the model than in the observed SST. In the model water from
Algerian Current reaches the Balearic Island. However, this has also been observed in
simulations of the Mediterranean DieCAST model (Fernández et al., 2003).

The implementation time here does not include the necessary calibration and validation
of the model. This is probably the most important and time-consuming task of the model
setup.

1Generation of child threads which are exact copies of the parent process.
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Figure 5.4: The Algerian Current model nested in the Mediterranean Sea model.
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Figure 5.5: The model SST of the 6 February 2000 is shown on the left and the weekly
averaged remote sensed SST of the 3 February 2000 on the right.
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5.2 Data assimilation

5.2.1 Coding aspects

The developed software is presented in the form of seven Fortran 90 modules. A specific
task such as binary input/output, reading the entry of the configuration file, high-level
matrix operation and the implementation of different analysis schemes, is assigned
to each module. The computation in data assimilation involves mainly linear matrix
algebra. Fortran is well suited for these computations since the matrices are primitive
data structures. Fortran 90 allows the definition of data types and operators, and the
assimilation package makes extensive use of this possibility. A new data type is defined
for sparse matrices. This structure contains only the non-zero elements of the matrix and
their indexes. This sparse matrix type is primarily intended for the observation operator.

Operators

The definition and overloading of operators makes use of data types particularly interest-
ing. For example, the matrix product was implemented with the operator “.x.”. The left
and right operant can be full or sparse matrices. A specialised multiplication subroutine
corresponding to the data types is associated to the operator “.x.” by the compiler. The
product of the two matrices A and B can then be written as:

C = A.x.B

Other operators involving the product of a diagonal matrix and a full matrix (the
operator .dx.) or the transpose of a matrix and a matrix (the operator .tx.) are
also defined. For performance reasons, it would be very inefficient to compute all
products by a generic multiplication routine. The multiplication itself is done by the
BLAS library (Basic Linear Algebra Subprograms). Most compilers allow us to inline
specific subroutines. If all multiplication functions are inlined, then the program strongly
resembles to a Fortran 77 code with direct call to the BLAS library. Therefore, the use
of operators for the matrix multiplication does not reduce necessary the performance.

The primary goal of this approach is to obtain a program code close to the underlying
mathematical formulas. For example, let us consider the following mathematical expres-
sion. It computes the amplitude of the correction along the error modes and is related to
equation (4.161).

A = UDUT
(
HSf

)T
R−1(yo −Hxf ) (5.3)

where D and R are diagonal matrices. Its diagonal elements are stored in the vectors
D and R respectively. This expression can be implemented with following the Fortran 90
code:

Hxf = H.x.xf

HSf = H.x.Sf

A = U.x.(D.dx.(U.tx.(HSf.tx.((yo-Hxf)/R))))
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We believe that the resulting code is more readable than the code with direct calls to the
BLAS library. The code is thus also easier to maintain and to extend.

The order of the multiplication can be controlled by brackets. The order does not change
the result but it has implications for the number of operations performed. Sometimes,
brackets are even necessary while they are optional in the mathematical expression. Any
user-defined operator has a lower precedence than a built-in operator. In particular, the
addition has a higher precedence than our multiplication operator.

5.2.2 Interface to the assimilation package

The assimilation package was developed so that the analysis can be performed in two
different ways: either by subroutine calls from the model directly to the assimilation
package or by separate standalone programs reading all necessary data from the disk.
Both approaches have advantages and limitations. The first method is the most efficient
one since the access to the disk is minimised. This approach is based on a single
executable running from the beginning to the end of the experiment.

The standalone program for the assimilation is very useful for testing the implementation
and for repeating an analysis step with different parameters. The same configuration file
can be used in both approaches and the standalone program can be used for a consistency
check without the run of the complete hydrodynamic model. The sequential character of
the Kalman filter algorithm also allows combining the model and the assimilation with
shell scripts. This approach is for example used by the SESAM package (Testut et al.,
2002). The coupling of the model and the assimilation scheme can be done very easily.

5.2.3 Binary data format

Large quantities of data are more efficiently stored in a binary data format than as
ASCII text. Currently, the GHER and a subset of the NetCDF format are supported.
The data stored and read through the assimilation program is limited to 1D, 2D and 3D
arrays of real numbers. The matrix can contain missing values (“holes”). These points
are generally attributed to land points or, for example, missing observations due to clouds.

Matrices A, where the elements are a linear combination of the indices, can also be
efficiently represented:

A(i, j, k) = a0 + a1i + a2j + a3k (5.4)

Only the coefficients a0, a1, a2 and a3 are stored. These files are called degenerated files.
For example, the longitude and latitude of each grid point can often be expressed in this
way.

For the GHER format, each file represents an array of real numbers. If the filename
ends with .gz, then the file is automatically decompressed. Simple Fortran 90-style
and Matlab-style extraction can also by performed. A coma-separated list of indices or
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ranges of indices in parenthesis can be appended to the filename, if only a subsection of
the matrix should be loaded.

For example, if the file GHER file.TEM is a 10× 10× 10 matrix, the “file”:

GHER file.TEM(:,:,6) is 10×10×1 matrix containing all elements with the 3rd indices
equal to 6.

GHER file.TEM(:,end,:) is 10 × 1 × 10 matrix containing all elements with the 2nd
indices equal to 10.

GHER file.TEM(1:,:end,1:end) is 10× 10× 10 matrix equal to the original matrix

But no arithmetic with the indices (for example GHER file.TEM(:,end-1,:)) are allowed.
If data extraction is used with degenerated matrices, the four coefficients are changed
accordingly to the subsection chosen.
A variable in a NetCDF file can be loaded by specifying a “filename” of the following
form:

NetCDF_filename#NetCDF_variable

If the NetCDF filename end with .gz, then the file is uncompressed as with the GHER
file format. The data extraction follows also the same rules as above.

The subroutines related to the binary output/input are grouped in one Fortran 90 mod-
ule. Most new utility programs are based on this module. All new added functionality
in this module is therefore beneficial for a large number of individual programs. The
support of compressed data and the data extraction facility have given all these programs
an additional flexibility.

5.2.4 The initialisation file

The assimilation package is independent of the model and the implementation. At
compile time, no problem-specific parameters have to be given. The whole assimilation
procedure is driven by a single initialisation containing all necessary information about
the model, the observations and the error covariances.

The initialisation file can specify parameters of different types: integer number, floating
number or a character string (mostly filenames). Also vectors of these types can be
specified. It is beyond the scope of this chapter to describe the complete syntax of the
initialisation file, but the following two examples should clarify how it works:

runtype = 2

Model.variables = [’ETA’,’TEM’,’SAL’]
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When the program search for example the key “runtype”, it gets the integer 2. A query
for the key Model.variables returns the vector containing the three character strings
’ETA’,’TEM’ and ’SAL’.

Sometimes a sequence of keys is attributed to the same values:

Obs001.path = ’/home/user/Obs/’

Obs002.path = ’/home/user/Obs/’

Obs003.path = ’/home/user/Obs/’

In this case one can use wildcards and write the following:

Obs*.path = ’/home/user/Obs/’

The meanings of the wildcards are the same as for filename generation of the Burne Shell.

5.2.5 Configuration

The initialisation file of the assimilation module is composed mainly of four sections:
configuration of the model (model state vector, position of the individual variables, error
space of the model and the partitioning of the state vector for local assimilation), obser-
vations to assimilate (observations, their position, and their error), possible diagnostics
of the analysis and miscellaneous flags.

The model

The following example contains the definition of the multivariate state vector. The key
Model.variables is a vector of character strings attributing to each variable a user
chosen name. The keys Model.gridX, Model.gridY, Model.gridZ and Model.mask are
vectors of filenames. The files in Model.gridX and Model.gridY are degenerated and
give the longitude and latitude of each variable. The files in Model.gridZ can be plain
files and contain the depth. The key Model.mask is used to determine the sea-land mask
of each variable. The exclusion value (or missing value in NetCDF terminology) marks
a land point and all other values represent a sea point. All files assembled into a state
vector should have physical values where the mask assumes a sea point.

The string in Model.path in prepended to each filename. Example:

Model.variables = [’ETA’ ,’TEM’ ,’SAL’]

Model.gridX = [’ligur.X(:,:,end)’,’ligur.X’,’ligur.X’]

Model.gridY = [’ligur.Y(:,:,end)’,’ligur.Y’,’ligur.Y’]

Model.gridZ = [’ligur.Z(:,:,end)’,’ligur.Z’,’ligur.Z’]

Model.mask = [’ligur.Z(:,:,end)’,’ligur.Z’,’ligur.Z’]

Model.path = ’/home/user/Data/’
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For nested grids the variables of the same nested grid must be grouped and the groups
must be ordered according to the resolution, starting with the highest resolution one. A
Model.gridnum is associated to each model grid: one for the highest resolution one, two
for the next highest resolution one, and so on.

Model.variables = [’TEM’ ,’SAL’ ,’TEM’, ’SAL’]

Model.gridX = [’ligur.X’,’ligur.X’,’med.X’,’med.X’]

Model.gridY = [’ligur.Y’,’ligur.Y’,’med.Y’,’med.Y’]

Model.gridZ = [’ligur.Z’,’ligur.Z’,’med.Z’,’med.Z’]

Model.mask = [’ligur.Z’,’ligur.Z’,’med.Z’,’med.Z’]

Model.gridnum = [ 1, 1, 2, 2]

Model.path = ’/home/user/Data/’

The error space of the model Pf is given either by specifying the columns of the matrix
Sf directly or by an ensemble of states. In the latter case Sf is obtained by the matrix
Ef containing the N members given by

Sf =
1√

N − 1

(
Ef − Ef1n×N

)
(5.5)

It is not necessary for the columns of Sf to be orthogonal. Sometimes it is useful to
change the error variance to modify the amplitude of the correction. The error variance
can either by changed by a constant factor α2:

Pf → α2Pf (5.6)

or by a diagonal matrix D:

Pf → DPfD (5.7)

The later approach allows us to change the error variance by a space dependent factor.
For example, the error variance can be decreased progressively to zero at depth in order
to avoid the assimilation to modify the variables at depth. However, it is important to
check that the new error covariance is in accordance with the basic equilibrium relations
of the ocean. For example, if the temperature and salinity variance is modified and
the elevation is not changed, then it is possible that the new error covariance no longer
satisfies the dynamical height relationship (6.2). Pressure gradients at depth can then
introduce important velocity changes at depth.

Covariance localisation makes assimilation feasible with a low dimensional error space.
This procedure suppresses (unrealistic) long-range correlations and increases the effective
rank of the covariance matrix. The covariance localisation is realised as in Testut et al.
(2002). The state vector is partitioned into several zones. These zones are specified by
a vector of the size of the state vector formed only by integral values. All elements in
the state vector with the same value in this partition vector belong to the same zone.
The analysis is done for each zone independently, taking only into account observations
nearby. This is implemented by changing the error variance of the observations. For each



110 Chapter 5. Programming aspects

zone located around the point xc , the weight of the observations R(x)−1 is multiplied by
a Gaussian function:

R′(x)−1 = exp

(
−disth(x,xc)

2

lc(x)2

)
R(x)−1 (5.8)

Here x and xc denote two points in the three dimensional ocean, disth(x,xc) is the
horizontal distance between these points and lc is the length scale defining which
observations should influence the analysis in a given zone. This length scale can depend
on the position x and is related to the horizontal correlation length. Since in a system of
nested models, the scale of the smallest processes resolved is different in each model, the
length lc is smaller in the high-resolution model than in the coarse resolution model. The
problem with this local analysis is that true long-range correlations are also filtered out.
Long-range errors can therefore only be corrected by a sufficiently dense observational
network.

The analysis in each zone is independent of the other. Therefore, a parallelisation of the
loop running over the zones is straightforward. As the GHER model, the local assimilation
scheme has been parallelised with PVM and OpenMP. Both parallelisation approaches
can be used at the same time. A parallelisation based on both, PVM and OpenMP, is
necessary to distribute the work of the analysis over all CPUs of the nesting system.

The observations

The observations to assimilate are ordered chronically and a time index starting with 1
is attributed to them. Observations at the same time are specified simultaneously. The
first observation vector yo constituted by SST and SSH can be defined for example by:

Obs001.date = ’06/07/2000’

Obs001.time = ’00:00:00’

Obs001.variables = [’TEM’,’ETA’]

Obs001.value = [’med.SST’,’med.SSH’]

Obs001.mask = [’med.SST’,’med.SSH’]

Obs001.rmse = [’med.SST.RMSE’,’med.SSH.RMSE’]

Obs001.gridX = [’med.SST.X’,’med.SSH.X’]

Obs001.gridY = [’med.SST.Y’,’med.SSH.Y’]

Obs001.gridZ = [’med.SST.Z’,’med.SSH.Z’]

The nearest model time step for the assimilation of the observations is computed from
the two first keys. The key ObsXXX.variables determines which model variables are
observed. The filenames of the observations themselves are specified in ObsXXX.value.
All points flagged as missing points (for example land and cloud points for the SST) in the
files ObsXXX.mask are not assimilated. These two last keys have generally the same value
since the mask is included in the observations. With the key ObsXXX.rmse, the root mean
square error of the observations (or the square root of the error variance) is specified.
The error variance can vary in space, but the observations are supposed to be uncorrelated.
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Observations Model

var.
index

i-
index

j-
index

k-
index

var.
index

i-
index

j-
index

k-
index

Inter-
polation
coeffi-
cient

Table 5.3: Structure of the sparse matrix

The three last keys define the grid on which the observations are given. For each scalar
observation the longitude, latitude and depth are specified. The observations can be
distributed in an irregular grid. For observations related to two dimensional variables
such as the surface elevation, a valid file for the depth is necessary, but its values are not
used.

The observation operator performs (possibly) a shift of the model state vector by the
offset x′ followed by the multiplication of the matrix H. The observation operator H(x)
can therefore be written as:

H(x) = H(x− x′) (5.9)

In most cases, the vector x′ is zero. But when the sea level anomalies are assimilated,
the elements of x′ corresponding to the elevation can contain, for example, the mean dy-
namic topography (MDT). There is no need to interpolate the MDT to the satellite tracks.

The matrix H is constructed with the information about the position of the observations.
If possible, a trilinear interpolation is done (temperature measurements at depth, for
example); otherwise, the observation operator is based on a bilinear interpolation (SST
for instance).

The implementation was done keeping the model nesting in mind. Several variables can
represent the same physical point due to the domain overlapping. This ambiguity is
solved by taking in this case the model grid with the highest resolution. The highest
resolution model is supposed to be more accurate than the model with coarser resolution.

Internally the observation operator is stored as a sparse matrix holding the interpolation
coefficients and the indexes of the non-zero elements of this matrix. It is also possible
to specify directly the sparse matrix H. This feature has been used to assimilate the
amplitudes of the SST EOFs (see chapter 7). Only the non-zero elements of H are given
in a nz × 9 matrix, where nz are the number of non-zero elements. Each line of this
matrix contains 9 numbers with the structure given in table 5.3. The first four integer
values are related to the observations. The index of the variable is the position where the
observed variable appears in ObsXXX.value and i,j,k-indexes are the three spatial indexes
of a single scalar observation. The integers in column 5 to 8 are related to the model
state vector. Again, the index of the variable is the position where the observed variable
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appears in Model.variables and i,j,k-indexes are the three spatial indexes of a single
scalar model state. If one of the model indexes is -1 the corresponding observation is
treated “out of grid” and the associated weight will be zero.
The column 9 is the value of the non-zero element of H. In the case of a linear interpola-
tion, it takes values between 0 and 1. Utilities for creating the observation operator, based
on a linear interpolation or a spatial low-pass filter and for multiplying sparse matrices in
these formats, have been developed.

The diagnostics

After the assimilation, the a posteriori state xa is returned to the GHER model. Several
optional diagnostics can be saved for future analysis of the assimilation experiment. These
diagnostics include:

• the model forecast, xf

• the model forecast at observation locations, H(xf ),

• the error space of the model forecast, Sf ,

• the standard deviation of the forecast error, diag(Pf )
1
2

• the standard deviation of the forecast error at observation locations, diag(HPfHT )
1
2

All these diagnostics can also be computed for the a posteriori state xa and the a
posteriori error covariance Pa. Furthermore the analysis increment xa − xf and the
analysis increment at observation locations Hxa−Hxf can be stored since they are useful
to detect systematic errors. Since the analysis increment is a linear combination of the
columns of Sf , these coefficients can also be diagnosed. When the covariance localisation
is applied, these coefficients are different for each zone. If the analysis has produced an
unrealistic state, it is thus possible to determine which error mode is dominant in the
analysis increment.

Also the error of the a priori state Hxf − yo and the a posteriori state Hxa − yo

compared to the observations can be stored directly.

All these diagnostics are highly redundant and it would be useless to export them all.
But the variety of possible diagnostics allows us to save to the disk exactly the needed
information. Furthermore, scalar diagnostics such as RMS errors and bias for each assim-
ilated variables are computed, as well the value of the χ2 testing the consistency of the
error covariances (Bennett, 1992):

J =
(
H(xf )− yo

)T (
R + HPfHT

)−1 (
H(xf )− yo

)
(5.10)

If the error covariance R and Pf are correctly specified, J follows a χ2
m distribution. The

degrees of freedom of this distribution is equal to the number of scalar measurements m.
In average, J should be equal to m.
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However, from the analysis equation (4.134) we can see that the analysis will not change
if the model and observations error covariance are both multiplied by the same constant
factor. But this constant factor will change the mean value of J . Therefore, for any Pf

and R one can find a multiplication factor for this covariances so that the average of J
is m but without changing the analysis.

Furthermore, it is not clear how this quantity should be interpreted when the error vari-
ance of the observations was artificially inflated to take into account the correlation of
the observations (see section 6.7).

5.2.6 Alternative analysis schemes

Besides the global analysis and local analysis, the bias aware analysis scheme of Dee and
Silva (1998) is also implemented (both in global and local mode). But the error space
Sa is not computed in this approach. This has been tested for the assimilation of the
sea level anomaly. An error in the mean dynamic topography used for referencing the
sea level anomaly would in fact introduce a constant bias in the assimilation. But the
bias aware assimilation scheme did not improve significantly the ability of the model in
predicting future observations.

Some physical constraints cannot be imposed by error covariances based on Gaussian
statistics. An example is stable water columns. Unstable water columns are possible but
they are rare and related to extreme atmospheric events. Gaussian statistics are symmet-
ric and therefore they suppose that positive corrections of the vertical density gradient
are as likely as negative corrections. It is not uncommon that the analysis renders the
water column unstable (Brasseur, personal communication). An analysis scheme enabling
us to maintaining the water columns stable by an anamorphosis transform is under devel-
opment. An anamorphosis transform consists in applying a nonlinear invertible function
f to the model state vector x (Bertino et al., 2002):

x′ = f(x) (5.11)

The pdf of this transformed state vector px′ is related to the pdf of the original state
vector px by:

px′(x
′) =

∣∣∣∣∂f

∂x

∣∣∣∣
x=f−1(x′)

px(f
−1(x′)) (5.12)

If the pdf px is specified by an ensemble of state x(k) , k = 1, . . . , N , then an ensemble of
realisations of x′ can be obtained by applying the nonlinear function to all states of x(k):

x′
(k)

= f(x(k)) (5.13)

The interest of the method lies in the fact that a non-Gaussian distributed state vector
can in principle be transformed into a Gaussian state vector.
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The most analysis schemes assume Gaussian distributed variables. If the ensemble of
model forecast xf does not have this property, then the anamorphosis transform can
be used to obtain a Gaussian distributed ensemble. The assimilation is performed on
the transformed variables. In general, the observation operator becomes a nonlinear
function. The a posteriori ensemble is finally transformed back by applying f−1 in order
to get the usual quantities which can be predicted by the model.

In practice, the anamorphosis transform is only applied to a subset of problematic
variables, such as the concentration of biological variables, which cannot become
negative. The distribution of the biological variables resembles more to a log-normal
distribution and by an appropriate anamorphosis transform, for example the logarithm
of the concentrations, these variables become Gaussian distributed variables. After
the assimilation, the variables are transformed back (by the exponential function for
example) and by definition all concentrations will be positive.

This approach of the anamorphosis transform has been implemented to control the
stability of the water columns. The difficulty resides in the fact that the stability of the
water column at a given depth depends on temperature and salinity above and under
this depth. The anamorphosis transform is therefore a non-local function and acts on
different variables simultaneously. Furthermore, the SST is often assimilated and the
observation operator involves the inverse anamorphosis transform. The observation
operator is therefore nonlinear, non-local and multivariate.

The choice of the anamorphosis transform is not unique. The anamorphosis transform
implemented in the assimilation package is based on a linearised state equation:

b = α(T − T0)− β(S − S0) (5.14)

where T0, S0, b, α and β are respectively the reference temperature, salinity, buoyancy,
thermal expansion coefficient and the saline contraction coefficient. The vertical gradient
of the buoyancy is the square of the Brunt-Väisälä frequency N2.

N2 =
∂b

∂z
= α

∂T

∂z
− β

∂S

∂z
(5.15)

For stable water columns, N2 is positive and for unstable water columns it is negative.
N2 is thus the parameter that we want to control by the anamorphosis transform. It
would not be a judicious choice to eliminate completely the possibility of unstable water
columns since they are real phenomena’s responsible for deep or intermediate water
formation. But the probability is very low and anamorphosis transform function can be
chosen in such a way that unstable water columns are possible but occurring only with a
given probability.

The anamorphosis transform proposed here changes T and S into the variables X and Y
by:
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X = f

(
α

∂T

∂z
− β

∂S

∂z

)
(5.16)

Y = α
∂T

∂z
+ β

∂S

∂z
(5.17)

(5.18)

The bottom temperature and salinity are not transformed. The function f is a nonlinear
function acting on N2. The expression of this function still has to be determined. Different
expressions for the second variable Y are of course possible. Here Y has been chosen so
that a change in Y does not affect at all the Brunt-Väisälä frequency. If f is invertible,
the whole transformation is also invertible. Temperature and salinity profiles are obtained
by integrating their gradients starting from the bottom.
A user-defined function can be specified for f . Further research is necessary to find
a good choice for the function f . This function can be determined by the cumulative
density function FN2 of N2. The value of the cumulative density function F 2

N in t is the
probability that the square of the Brunt-Väisälä frequency is less than t:

FN2(t) = Pr(N2 < t) (5.19)

The cumulative density function FX of the transformed variable X = f(N2) can be related
to FN2 since:

FX(x) = Pr(X < x) = Pr(N2 < f−1(x)) = FN2(f−1(x)) (5.20)

The function f is invertible, therefore it must be either monotonously increasing or
monotonously decreasing. In equation (5.20) we have assumed the former case. The
cumulative density function F 2

N can be determined from the data and FX should be a
Gaussian cumulative density function and is thus also known. The anamorphosis trans-
form function f is therefore:

f(t) = F−1
X (FN2(t)) (5.21)

To our knowledge, this method for determining the anamorphosis function is a new
approach. Previously, only simple analytical functions such as the logarithm have been
applied. Here, the function f is obtained from the statistics of the variable. A simple
and efficient way to express the cumulative density functions FX and FN2 is by means
of a piecewise linear function. The inverse of a piecewise linear function is obtained
by permuting the independent and dependent values of the vertices. A function of a
function is determined by a simple linear interpolation.

The main difficulty of the anamorphosis method is to find a suitable transformation. It
is not clear if it can be assumed that this function is constant in time and over the whole
domain. Furthermore, as it has been stated earlier, the observation operator becomes
nonlinear if the transformed variables are observed. In some particular cases, this can be
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avoided. If the anamorphosis transform involves only the observed variables individually,
the same transformation can also be applied to the observations. A nonlinear observa-
tion operator is not mainly a problem for the implementation, but the standard Kalman
analysis is derived for a linear observation operator. The ensemble Kalman filter analy-
sis (4.142) can be extended to nonlinear operator if the matrices HPfHT and PfH are
estimated directly from the ensemble (Nerger, 2004). However, for a highly nonlinear
observation operator, there is no guarantee that the analysis will produce an a posteriori
state closer to the observations.



Chapter 6

Assimilation of SST and SSH

SST and SSH are assimilated in the system of nested models described in the previ-
ous chapters. The assimilation scheme is based on the equations (4.161) and (4.166).
This chapter explains how this assimilation scheme is implemented to the nested mod-
els. In particular, the choice of the model state vector, the observations, the model error
covariances and observation error covariance are described. Finally the results of the
assimilation experiment are discussed.

6.1 Ensemble generation

Errors on the initial conditions and the atmospheric forcings are considered as the major
error sources affecting the model forecast. The error space for the data assimilation has
been defined consequently. An ensemble of 200 members has been created by perturbing
the initial conditions and atmospheric forcings. For computational efficiency, only the
coarse and intermediate resolution models were used.

6.1.1 Initial conditions

The initial temperature and salinity of the coarse resolution model are perturbed by
a pseudo-random field with a horizontal correlation length of 100 km and a vertical
correlation length of 20 m. A description of the random field generation can be found in
Evensen (2003). At the surface, the standard deviations of the temperature and salinity
perturbations are 0.5 ◦C and 0.1 respectively. Since the variability of the ocean is higher
at the surface than at depth, the standard deviation of the perturbation is supposed to be
a function of depth. A function of Gaussian shape with an inflection point at the depth
of hIP = 170 m has been chosen.

σ(z) = σ(0) exp

(
− z2

h2
IP

)
(6.1)

The depth of 170 m is also the transition depth of the two sigma regions of the coordinate
transform. By comparing the model with CTD profiles measured in the Ligurian Sea
(Sirena Cruises carried out by the Saclant Centre, La Spezia, Italy in August 2000), the
model errors are indeed small, about 0.1 ◦C below that depth. In any circumstances,
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even with a higher error at this depth, the surface data assimilated in the present work
would not allow us to correct it. In this sense, the depth hIP and the vertical correlation
length also reflect our a priori idea of the depth to which a surface measurement can
have a significant impact.

The perturbation on elevation is computed from the temperature and salinity perturba-
tion. At a depth of h0 = 700 m, horizontal variations of the hydrostatic pressure are small.
This hypothesis was validated on several model results at different times. It implies a bal-
ance between temperature, salinity and surface elevation. The elevation perturbation ∆ζ
is therefore computed from the temperature and salinity perturbations ∆T and ∆S by
the following linearised relation (Haines, 2002):

∆ζ =

∫ 0

−h0

α∆T − β∆S dz (6.2)

This relationship is based on the assumption that the hydrostatic pressure does not change
at depth h0. The parameters α and β are the mean values of the thermal expansion
coefficient and the saline contraction coefficient respectively:

α = −1

ρ

(
∂ρ

∂T

)
p,S

(6.3)

β =
1

ρ

(
∂ρ

∂S

)
p,T

(6.4)

Elevation, temperature and salinity perturbations allow us to compute the perturbation
on the hydrostatic pressure by a linearised state equation. The perturbation of the hor-
izontal velocity is supposed to be in geostrophic balance with the hydrostatic pressure
perturbation. While the geostrophic balance relation is well respected in the interior of
a basin, the relationship between pressure and velocity is more complex near the coast.
For instance the geometry of the coast, nonlinear and non-stationary effects cannot be
neglected. Therefore, at the coast, the velocity field is not perturbed. A coefficient c(x)
ranging from 0 at the coast to 1 in the interior of the basin ensures a smooth transition.

∆ph(z) = gρ0∆ζ − gρ0

∫ 0

z

α∆T − β∆S dz (6.5)

∆u =
c(x)

f
∇ (∆ph) ∧ ez (6.6)

The coefficient c(x) decreases over a length scale of 50 km. Important perturbations
of the velocity near the coast and inconsistent with the coast line geometry might also
produce an “adjustment shock” and should be avoided also for the sake of the numerical
stability.

The turbulent kinetic energy is not perturbed. It depends on a highly nonlinear way on
the stratification and the shear and it is not clear what a consistent perturbation could
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be. Furthermore the turbulent kinetic energy adjusts itself very rapidly to the density
structure and the velocity profile of the model.

Perturbations of the coarse grid model initial conditions are finally interpolated to the
Provençal basin model grid. The length scale of the perturbation is sufficiently resolved
on coarse grids and the perturbations are comparable to those that one would obtain by
generating the perturbation directly on the grid of the Provençal basin. But the latter
approach would need some special treatment at the boundary between the coarse and
intermediate resolution model to ensure a smooth transition between the two models
initial conditions.

6.1.2 Atmospheric forcings

The atmospheric forcings are a non- negligible source of uncertainties in ocean forecasting.
The dissipation in ocean systems will progressively let the system “forget” its initial
conditions (e.g. Navarra, 2002). The uncertainties due to the initial conditions will
therefore tend to zero after a sufficient long time integration. The errors due to the
atmospheric forcings are however constantly injected into the model and will therefore
have a significant impact on the longer term.

The air temperature at 2 m, the surface wind and cloud coverage were perturbed with
a random field of 3 ◦C, 5 m/s and 30% standard deviation respectively. The two first
standard deviations are also those chosen by Brusdal et al. (2003). The cloud coverage
standard deviation is inspired by the temporal variability of the cloud coverage in summer.
The perturbed cloud coverage is brought back in the permitted range of 0% and 100%.
The spatial correlation is 1000 km and the time correlation is seven days.

6.1.3 Model integration

The Provençal Basin Model nested in the Mediterranean Sea Model has been integrated
for 2 weeks starting on 5 July 2000. Each member starts from different initial conditions
and is forced by perturbed atmospherics fields, but otherwise the conditions of each model
integration are identical. The final ensemble contains therefore the cumulative spreading
effects of unknown initial conditions and atmospheric forcings. Before this ensemble is
used for the assimilation experiments, its statistics such as variance and covariance are
analysed. The feedback between the Provençal Basin Model and the Mediterranean Sea
Model produces naturally an ensemble where the values of the intermediate resolution
model are consistent with those of the coarse resolution model and where the transition
between the two models is smooth and dynamically meaningful.

6.1.4 Analysis of the ensemble

The spatial structure of the ensemble correlation is studied by choosing a surface point in
the Gulf of Genova at 44◦20’ N and 8◦ 48 E. Figure 6.1 shows the horizontal and vertical
correlation between the temperature at this location and the temperature of the other
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grid points of the Provençal Basin Model. The correlation clearly reflects the path of
the Northern Current. Since this current transports at the surface the same water mass
(Modified Atlantic Water, (Sammari et al., 1995)), the temperature is strongly correlated
along its track. This horizontal structure of the correlation is an imprint of the dynamical
properties of the region under study since this anisotropic distribution of the correlation
was neither present in the perturbation of the initial conditions nor in the atmospheric
forcings.
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Figure 6.1: Horizontal and vertical correlation between the surface temperature at
44◦20’ N and 8◦ 48 E with the temperature at other positions in the Provencal basin.

6.2 Multivariate covariance

In some optimal interpolation and 3D-Var assimilation schemes, the error covariances
are parametrised for example in terms of variance and correlation length (De Mey and
Benkiran, 2002). The covariances between different variables are the most difficult to
estimate in this context. A stochastic ensemble of model states or the time-variability of
the model constitutes a very efficient and simple approach to estimate the multivariate
error covariances. Examples exist in literature where an ensemble is used to calibrate
variables of a parameterised error covariance (Etienne and Dombrowsky, 2003).

The upper panel of figure 6.2 shows the covariance of the elevation at the marked
location in the Provençal Basin with the SST in the Mediterranean Sea. Near this point
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the covariance is positive. This translates our physical understanding that if the surface
is lifted, the water column must become lighter in order to avoid pressure and velocity
changes at the reference level of no motion.

The error of these covariances due to the limited ensemble size can be estimated as
described in Hamill et al. (2001). If c is the covariance between two random variables x1

and x2 and ĉ is the estimated covariance based on n ensemble members, then the standard
deviation of this estimator is for large n given by:

std(ĉ) ∼
√

1

n
(1 + corr(x1, x2)2) var(x1)var(x2) (6.7)

The lower panel of figure 6.2 illustrates this error estimation of the covariance between
elevation and temperature. Uncertain error covariances can degrade the unobserved
variables after assimilation. This is in average the case when the relative error of the
covariance is greater than 1. The relative error is the ratio between the error of the
covariance and the absolute value of the covariance (Daley, 1991; Hamill et al., 2001).

Figure 6.3 shows the relative error for covariance between the elevation at the chosen
location and the temperature. In red are the regions where the threshold is exceeded and
the assimilation of a single elevation point in the Provençal-Basin will degrade in average
the result. But where the covariances are small, only a small degradation would occur.
In general, the estimation of small correlation requires a large ensemble size in order to
be sufficiently accurate. From equation (6.7) one can show that the needed ensemble size
n to accurately estimate a correlation useful for data assimilation must be greater than:

n >
1 + corr(x1, x2)

2

corr(x1, x2)2
(6.8)

In general, the correlation between two variables is expected to decrease with their
distance. Therefore it is not surprising that the regions where the assimilation of a single
elevation measurement in the Provençal-Basin is likely to degrade the results are found
far away from the observation point. This has consequences for the implementation of
the assimilation and will be discussed in more details in section 6.3.3.

The finite ensemble size is only one of the error sources affecting the covariance estimation.
The model inadequacy introduces also an error in the covariances. It is in reality a
problem of the stochastic perturbation when uncertainties on the model parameterisation,
for example, are not taken into account. Multiphysics and multimodel ensemble have
been studied in meteorology for this purpose (Buizza et al., 1999; Stensrud et al., 2000;
Houtekamer et al., 1996).

Empirical orthogonal functions

The elevation, temperature and salinity of the coarse and intermediate model resolution
grid have been grouped into a multivariate and multigrid state vector. The ensemble
of these state vectors has been produced by a stochastic forecast. In this approach it is
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Figure 6.2: Covariance between the elevation of a point in the Provençal Basin at 42◦30’ N
and 8◦ E and the sea surface temperature in the Mediterranean Sea in the upper panel.
The lower panel shows the associated error due to the finite ensemble size by using the
estimated variances and correlations in equation (6.7).
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Figure 6.3: Relative error of the covariance between the elevation of a point in the
Provençal Basin at 42◦30’ N and 8◦ E and the sea surface temperature in the Mediter-
ranean Sea. The colour bar is limited to 2.
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inevitable that some members will resemble to each other. By assuming that the ensemble
statistic is sufficiently Gaussian distributed, an EOF decomposition of the ensemble can
quantify the redundancy in the ensemble. The EOF analysis seeks the most important
and recurrent differences between the ensemble members and the ensemble mean. This
implies naturally that we need a norm in the state space to compare the importance of an
error in the elevation, temperature and salinity. The sum of barotropic potential energy
PE and available potential energy APE (Lorenz, 1955) was used for this purpose.

PE + APE =
1

2
ρ0g

∫
S

∆ζ2ds +
1

2
ρ0g

2

∫
V

α2∆T 2 + β2∆S2

N2
dv (6.9)

where ∆ζ, ∆T and ∆S are respectively the difference in elevation, temperature and
salinity between an ensemble member and the ensemble mean. The first integral is per-
formed over the sea surface S and the second of the entire volume V . The Brunt-Väisälä
frequency N is computed from the ensemble mean and spatially filtered at sub-basin
scale. The parameters α, β and ρ0 are constants and represent typical values of the
thermal expansion coefficient, the saline contraction coefficient and density respectively.

The two parts of this norm are related to the wave processes. The PE represents the
energy that could be released into barotropic waves by transforming the surface elevation
into a plan surface. The APE accounts for the energy that could be released by an adi-
abatic transformation of the density field into horizontal homogenous distributed density
(here at subbasin scale, see figure 6.4). This kind of transformation generally produces
internal waves.

−→

Figure 6.4: Adiabatic transformation of the density field. The lines represent the isopyc-
nals. The horizontal homogeneous density field is the state with the minimum potential
energy that can be reached without mixing the water masses.

The APE and PE of the free model run were computed. Generally, the APE is three to
four orders of magnitude larger than the PE. The norm as expressed by equation (6.9)
takes therefore mainly the baroclinic variability into account. For the computation of the
EOFs this means that only the surface elevation variability originating from baroclinic
processes is contained in the dominant EOFs. In ocean circulation model, the simulated
processes are indeed focused on baroclinic variability. Rigid lid models even exclude the
barotropic mode. Also, the observations assimilated in ocean circulation models often
do not resolve the high frequent barotropic variability. The low weight attributed to
the elevation is thus justified for ocean circulation models. However, if barotropic wave
processes are studied, the error space should contain also purely barotropic error modes.
A possible way for doing so is to scale PE and APE by their standard deviation.
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The impact of temperature and salinity on the norm becomes important where the
Brunt-Väisälä frequency is small. This can be interpreted in physical terms: where N2

is small, a slight error in temperature or salinity will have an important effect on the
dynamics since it corresponds to a large displacement of the isopycnals.

The norm expressed as surface and as volume integrals has also the desirable property
that its value is independent of the chosen spatial discretisation. In our implementation,
the discretisation is neither regular in the vertical nor in the horizontal due to the grid
refinement. The norm makes allowance for the different surfaces and volumes of the
grid cells. Furthermore, it is not trivial to combine into a consistent norm two- and
three-dimensional variables. Indeed, the impact of one surface point affecting the whole
water column has to be compared to the impact of the temperature and the salinity of
a single grid box. The norm (6.9) scales the 2D elevation field and the 3D temperature
and salinity field in a consistent way.

The grid refinement introduces another subtlety. The state vector contains the grid
points in the Provençal Basin twice: once at coarse resolution for the Mediterranean Sea
model and once at intermediate resolution for the Provençal Basin model. In order to
avoid counting twice the model error in these regions, the weights of the Provençal Basin
grid points at coarse resolution are put to zero during the EOF calculation.

Figure 6.5 shows the Mediterranean Sea components of the first three EOFs obtained by
the ensemble. The elevation of the ensemble shows a high variability especially at the
coast along the basin-wide currents. Since the geostrophic transport of these currents is
related to the slope of the elevation, the elevation variability can be viewed as variability
in transport. The conservation of the water volume imposes a high correlation of the
elevation along the path of the current. The constraint of orthogonality between the
EOF modes is responsible for the fact that different branches of the coastal current have
successive non-zero values.

The first three temperature EOFs show very large scale structures at the surface, having
some resemblance with the first Fourier modes. In fact, if a covariance matrix P (x,y) =
f(x − y) is translation invariant, one can easily show that the eigenfunctions of the
covariance matrix are the Fourier modes:∫

V

P (x,y) exp(i k · y) dy = exp(i k · x)

∫
V

f(t) exp(i k · t) dt (6.10)

To some extent the error covariance in temperature is similar for different positions in
the Mediterranean Sea. This is due to the fact that the surface temperature is largely
influenced by the air temperature at 2 m and by the cloud coverage. The prescribed
error covariance of the atmospheric forcings is indeed translation invariant.

In the contrary, salinity was not directly perturbed by the atmospheric forcings (since
the freshwater flux was not perturbed). The EOF modes contain therefore the indirect
dynamical response to the atmospheric forcings and the remaining perturbation of the
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Figure 6.5: The 3 leading multivariate EOFs of the Mediterranean Sea model showing the
elevation, surface temperature and surface salinity. The normalised EOFs were multiplied
by the square root of the eigenvalues such that the resulting field is a dimensional quantity.
EOF components on the Provençal model grid are not shown.

initial conditions.

It was verified that the multivariate EOF modes are close to the following balance:

∆ζ =

∫ 0

−h0

α∆T − β∆S dz (6.11)

A positive temperature and a negative salinity anomaly are therefore associated to a
positive elevation anomaly. It is important to validate physically the EOFs modes when
they are used as basis functions of the error subspace in a data assimilation context. The
a posteriori state will be a linear combination of the EOFs modes. Unphysical EOFs
would leave the system in an unbalanced state after assimilation of observations.

6.3 Implementation

6.3.1 State vector

The state vector for the assimilation is composed of the elevation, temperature and
salinity in all nested grids. Since the coarse grid contains grid points at the same
geographic locations than next finer nesting level, the state vector contains some
redundancy. These elements are linearly related to corresponding elements of the next



126 Chapter 6. Assimilation of SST and SSH

finer resolution nesting level by the feedback procedure of the nesting method. It is not
necessary to exclude the redundant grid points, as long as their relationship is correctly
represented by the error covariance matrix.

Novel in the choice of the state vector is that these three variables from all nested model
grids are assembled into one multigrid state vector. This implementation allows us to
take into account the correlation of the variables across the nested model grids in order to
avoid, for example, artificial gradients at the nesting boundary after an assimilation cycle.

The velocity is not present in the state vector since the error covariance between surface
elevation, temperature and salinity were prescribed by the geostrophic balance (based on
a linearised state equation) and no velocity observations are used. This assumption was
also made by e.g. De Mey and Benkiran (2002), Haines (2002) and Brankart et al. (2003).
One can show that the analysis can be made with a state vector containing only elevation,
temperature and salinity if the analysis increment of the horizontal velocity is obtained
by the geostrophic balance. Near the coast, the velocity of the model was not corrected
by a geostrophic current because of the nonlinear interactions with the coastline geometry.

The turbulent kinetic energy is discarded because of its highly nonlinear dependence on
the other variables. Also, the fact that the eddy kinetic energy is always positive cannot
be taken into account by an analysis scheme based on Gaussian statistics. Furthermore
the kinetic energy adjusts itself rapidly to the local shear and stratification. However,
studies (e.g. Korres et al., 2004) exist where the potential benefit for analysing also the
variables of the turbulence closure scheme was stressed.

6.3.2 Error space

The 50 leading modes obtained from the multivariate and multigrid EOF decomposition
have been used as a basis of the background error space. The components of this error
space basis for the Ligurian Sea have been linearly interpolated from the EOFs of the
Provençal basin. As a consequence, the error modes are no longer guaranteed to be
orthogonal but this property is not necessary for the analysis scheme.

The covariance represented by the 50 EOFs is less accurate than the covariance obtained
from the 200 ensemble members due to the truncation of the EOFs series. However, the
covariance matrix based on the EOFs is by construction the closest (in spectral and Frobe-
nius norm) to the initial ensemble covariance among all possible reduced rank covariance
matrices. But a crucial consequence of the reduced rank representation is the fact that
only the model error components lying inside this space can be corrected.

6.3.3 Covariance localisation

For representing accurately small correlations, a large number of ensemble members
and a high dimensional error space are needed. Small error covariances obtained from
a limited number of EOFs are therefore unreliable and they are likely to degrade the
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Figure 6.6: Correlation coefficient of the elevation time anomaly (model snapshot minus
a two-year average of the model) as a function of distance. The upper and lower part
shows the correlation coefficient of the Ligurian Sea and Mediterranean Sea of a model
snapshot.

analysis. It is generally assumed that the covariance between two points decreases with
the horizontal distance. The assimilation scheme is implemented in such a way that
horizontal correlations beyond a certain horizontal distance hc are neglected. Thus,
observations outside this radius do not have an impact on the water column inside this
circle. Therefore, the assimilation is done water column per water column as in Brankart
et al. (2003) using only the subset of observations lying inside the influence radius. The
continuity of the analysis is ensured by decreasing the weight R−1 of observations outside
the influence circle progressively to zero.

This method enhances also the flexibility of the analysis to reach any state. The
EOFs amplitudes of the analysis increment are no longer constant over the whole
domain but can vary in space. A similar approach has also been implemented in
the EnKF (Evensen, 2003). The problem with this approximation is that errors with
scale greater than hc can only be corrected with a sufficiently dense observational network.

The correlation distance hc has been determined by the correlation length of the spatial
structures present in the elevation time anomaly. A correlation distance of 47 km has
been chosen for the Ligurian Sea. This length increases gradually to 200 km on the
Mediterranean Sea model grid (figure 6.6).
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Coarse grid model Fine grid model Interaction

assimilation assimilation no interaction

assimilation no assimilation no interaction

assimilation no assimilation interpolation from CGM to FGM

no assimilation assimilation no interaction

no assimilation assimilation averaging from FGM to CGM

Table 6.1: Different possibilities of data assimilation and interactions in a system formed
by a coarse grid model (CGM) and a nested fine grid model (FGM).

6.4 Benefit of a unique multigrid state vector

The traditional approach of data assimilation with nested models is to use separate state
vectors for the different models (e.g. Bell et al., 2000; Martin et al., 2002; Pinardi et al.,
2004; Onken et al., 2003). For each model, one can decide whether or not to assimilate
observations and if one model does not assimilate observations, it can be influenced or
not by the model with assimilation. Five different scenarios are thus possible for data
assimilation in a system composed of a coarse and an embedded fine resolution model.
These possibilities are summarised in table 6.1. All these options can be applied in
the frame of one-way or two-way nested models. Different approaches are currently
tested (Vandenbulcke et al., 2003, 2004) and these experiments are part of the MFSTEP
research program.

The first and the third scenarios of table 6.1 are attractive since they allow us to
assimilate observations of any location within the nesting system. For the two last
methods only observations covering the fine grid model can be assimilated. The nested
models are sensitive to the boundary conditions and it should be avoided to impose
boundary conditions inconsistent with the dynamics of the nested models. This obvious
problem of the second approach can be reduced by the third approach.

Let us consider the case where the assimilation is done in coarse and nested model sepa-
rately. A point located on the coarse grid near the nesting boundary modifies the results
of the coarse grid but it is not taken into account in the assimilation of the nested model.
Obviously, this leads to inconsistencies along the nesting boundaries. To illustrate this
problem, SST and SSH of the 27 July 2000 have been assimilated into the Ligurian Sea
and Provençal Basin model forecast separately. Figure 6.7 shows the SST difference be-
tween the a posteriori states of both models in the Ligurian Sea. Far from the boundaries,
both analyses lead to the same result but at the boundaries the difference reach 0.7 ◦C.
This test was repeated for other days and the highest differences were generally observed
at the corner of the Ligurian Sea domain. For geometrical reasons, the number of sur-
face observations influencing this part of the domain is only a quarter of the number of
observations affecting the a posteriori state of the Provençal basin model while at the
boundaries far from the corner, this ratio of influencing observations is one half. The
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Figure 6.7: SST difference between the a posteriori state compute from a single state
vector and separated state vector. Isoline interval is 0.1 ◦C. Maximum and minimum
values are 0.3 ◦C and −0.7 ◦C respectively.

values at the boundary in figure 6.7 represent thus the discontinuity produced by the
assimilation between the Ligurian Sea and the Provençal Basin. The other variables,
observed or not, present similar discontinuities. It is not obvious how this inconsistency
between the parent and nested models can be reduced. A possible ad hoc solution could be
to combine linearly both fields in the overlapping domain where combination coefficients
depend on the distance to the nesting boundary.

In the third method of table 6.1, the fine grid model is restarted from the interpolated a
posteriori field of the coarse grid model. Apparently, there are no problems of inconsis-
tencies between the coarse and the fine grid model. However, the small-scale information
of the fine grid model is lost after the assimilation. This is an undesired characteristic
especially for short assimilation cycles. Alternatively, only the analysis increment is in-
terpolated and added to the fine grid state. However, this is only feasible for two-way
nested models.

6.5 Observations

The model dynamics were constrained by two data types: sea surface temperature (SST)
and altimetry (SSH). These two observations were assimilated each week in the system
of nested models.
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6.5.1 Sea surface temperature

The SST data sets used are weekly means of daily composites of NOAA-scenes processed
by the remote sensing data center of the DLR (Deutschen Zentrum für Luft- und
Raumfahrt). Several satellite swaths have been combined by taking the maximum
temperature. Also daytime images have been used, which reduces the information for
the subsurface layers. The sea surface temperature was assimilated at 14:00 GMT.
The model sea surface temperature reaches its maximum on this diurnal cycle at this time.

The initial resolution of the SST is 1 km. Despite that the load of the analysis step is
linear with respect to the number of observations, there is no interest to assimilate this
high resolution temperature in the coarse resolution model. The resolution was degraded
to 10 km where the high-resolution information in the SST is not expected to have a
significant impact on the Ligurian Sea model. The SST data is therefore split into a
1 km resolution SST covering mainly the Provençal-Basin and a 10 km resolution SST of
the rest of the Mediterranean Sea.

6.5.2 Sea surface height

The assimilated SSH are tracks from Topex/Poseidon and the ERS-2 mission (European
Remote-Sensing). From the 31 August 2000 also tracks of the GFO mission (Geosat
Follow-on) were assimilated. These data were obtained from the Naval Research
Laboratory Stennis Space Center website. All data falling within the time window of one
week were assimilated at the same time. The mean dynamic topography is obtained by a
two-years free model run starting the 1 January 1998. The along track resolution is about
7 km. Often spatial scales shorter than 40 km are removed (e.g. Larnicol et al., 2002).
This step was not done here since the analysis step should filter out the information
that is not in agreement with the model error statistics. The difference between the
model and the observations contains therefore an important noise part and small scale
variations that cannot be represented on the coarse model grid of the Mediterranean Sea.

The part of the signal with variations smaller than the model resolution can be quantified
by a singular value decomposition of the observation matrix H. This operator linearly
interpolates the model elevation to the observations points. In the overlapping domains,
the surface elevation with the highest resolution is taken. The singular decomposition of
H can be written in the following way:

H = UHΣHVT
H (6.12)

with UT
HUH = I, VT

HVH = I and where ΣH is a diagonal matrix containing only non-
zero elements on its diagonal. The matrix product UHUT

H is not equal to the identity
matrix since the eigenvectors with a zero eigenvalue have been rejected. The mean square
difference between the SSH observations yo and the model counterpart Hx can be divided
into two parts: the RMS error in the space formed by the columns of UH and the RMS
error of the space orthogonal to the space formed by UH.
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‖yo −Hx‖2 = ‖yo −UHUT
Hyo + UHUT

Hyo −Hx‖2

= ‖yo −UHUT
Hyo‖2 + ‖UHUT

Hyo −Hx‖2 + 2(UHUT
Hyo −Hx)T (yo −UHUT

Hyo)

= ‖yo −UHUT
Hyo‖2 + ‖UHUT

Hyo −Hx‖2 (6.13)

This is the Pythagoras’ theorem for orthogonal vector spaces. The two vectors yo −
UHUT

Hyo and UHUT
Hyo −Hx are orthogonal since:

(UHUT
Hyo −Hx)T (yo −UHUT

Hyo) = (UT
Hyo −ΣHVT

Hx)TUT
H(yo −UHUT

Hyo) = 0 (6.14)

The first part of the error in equation (6.13) is only due to the scales that cannot be
represented on the model grid. It is not possible that the model can get closer to the
observations than this amount. The residual yo −UHUT

Hyo contains scales smaller than
25 km (the resolution of the Mediterranean Sea model) and can be treated as observational
noise. Figure 6.8 shows the minimum RMS error for the different bins of SSH tracks. This
minimum error should be considered when interpreting the RMS error between model and
observations.
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Figure 6.8: The minimum SSH RMS error ‖yo −UHUT
Hyo‖2 between model and obser-

vations due to geometric constrains.

6.5.3 Observation operator

The model counterpart of this two SST data sets and the SSH tracks are obtained by
bilinear interpolation of the models surface temperature layer and elevation respectively.
Since the data assimilation scheme has been implemented to work on the top of the
system of nested models, it can handle the fact that the interpolation may involve data
from different grids. In the overlapping domains the information on the finest resolution
grid is chosen.
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6.6 Treatment of the observation error covariance

matrix

The observation error is the sum of two different contributions: the instrumental error
and the representativeness error. The latter is generally larger than the former. While it
can be assumed that the instrumental error is not correlated in space, this is not true for
the representativeness error. The correlation length scale of the representativeness error
is related to the size of the unresolved processes.

For oceanic systems, the number of observations m is often larger than 104. If the cor-
relation of the observations is taken into account, a matrix of the size m × m must be
inverted. Depending on the specific formulation, this is either the observation error co-
variance matrix R or the sum HPfHT + R. This last matrix represents the covariance
of the difference between the observation and their model counterpart (yo −Hxf ). The
inversion of such matrices is prohibitive since they are ill-conditioned and since the in-
version is computationally intensive. The conditioning of the matrix R is related to the
correlation length scale. For larger correlation lengths, the condition number1 increases.
The complete inversion of R requires O(m3) operations. However, in the assimilation
algorithm only products between R−1 and a vector must be computed. These products
can be computed by solving the linear system for y:

R−1b = y ⇒ Ry = b (6.15)

The performance and accuracy of a linear solver depends on the condition number of the
matrix R. If the a posteriori error space Pa has to be computed, then r linear systems
have to be solved, where r is the dimension of the error space.

6.6.1 Impact of correlated observations

Often the error correlations of observations are ignored during the analysis. In order to
find alternative ways to take the spatial correlation of the observations into account, it
is interesting to determine the impact of correlated observations and the consequences of
neglecting this correlation.

The simplest system for assessing the impact of the correlated observations is constituted
by a scalar state xf with an error variance of P f . The observation vector yo contains two
correlated direct measurements of the state xf . The error covariance matrix R of yo and
the observation operator H have the following form:

1 The condition number C is the ratio of the largest to smallest singular value in the singular value
decomposition of a matrix. The base-10 logarithm of C is an estimate of how many digits are lost in
solving a linear system with that matrix. In other words, it estimates worst-case loss of precision. A
system is said to be singular if the condition number is infinite, and ill-conditioned if it is too large, where
“too large” means roughly that log(C) is greater than the precision of matrix entries.
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R = σ2
o

(
1 c

c 1

)
(6.16)

H =
(

1 1

)
(6.17)

The parameter c is the correlation between the observations yo
1 and yo

2 and σ2
o their error

variance. The analysed state of this system is:

xa = xf + P fHT
(
HP fHT + R

)−1 (
yo −Hxf

)
(6.18)

= xf +
P f

σ2
o(1 + c) + 2P f

(yo
1 + yo

2) (6.19)

This simple example shows that the correlation decreases the weight attributed to the
observations.

6.6.2 Alternative schemes

Different ways can be considered for assimilating correlated observations with a diagonal
observation error covariance matrix. Either the error covariance matrix R is modified or
the observations.

From equation (6.19), we can see that a diagonal error covariance with an error variance
inflated by 1 + c would yield the same analysis. In the case of m perfectly correlated
observations, one can also show that the correlation can be ignored if the error variances is
multiplied by m. In practice, the observations are not perfectly correlated. The correlation
is described by a correlation function decreasing over at a given length scale. In a simplified
view, the observations separated by a distance shorter than this correlation length can
be considered as strongly correlated and the other observation pairs can be considered as
uncorrelated. The number of observations r of a two-dimensional data set correlated to
a single observation can be roughly estimated by:

r ∼ Lx

∆x

Ly

∆y
(6.20)

where Lx and Ly are the correlation lengths along the two dimensions of the data set
and ∆x and ∆y the resolution. In summary, the correlation between the observations
has the effect to reduce the weight of the observations during the analysis. If an existing
correlation is neglected (for simplicity of the implementation for example), then the
weight of the observations has to be decreased explicitly. This can be done by inflating
the error variance of the observations by the average number of highly correlated and
redundant observations. For a 2D dimensional data set this number can be estimated by
equation (6.20).
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If the two observations assimilated in the simple example described in section 6.6.1
are perfectly correlated (c = 1), then the assimilation of a single observation with the
same error variance would give the same results. In this case, the second observation yo

2

does not provide any new information. This suggests that correlated observations can
also be handled by excluding the redundant information from the observation vector.
For a correlation length L, only observations separated by a distance of the order of L
provide additional constraints to the model that can be considered as independent. The
observations can for example be subsampled. In a 2D data set, this means that only
every rx = Lx

∆x
observations in the x-direction and only every ry = Ly

∆y
observations in the

y-direction are retained for the analysis.

In order to take all data into account, the observations can be binned into the so-called
super-observations (e.g. Smith and Reynolds, 2003; Caires and Sterl, 2003). Every data
bin represents then the mean of the observations within a rectangle of the size Lx × Ly.
Also, means based on distance depending weights can be considered.

Formally, the subsampling and the binning consists in replacing the observations yo by
the transformed observations Cyo. The operator C performs either the supsampling
or the data binning. With the common notations, the analysis for these transformed
observations can be written as:

xa = xf + PfHTCT
(
CHPfHTCT + CRCT

)−1 (
Cyo −CHxf

)
(6.21)

The observation operator H and the observation error covariance matrix R have been
changed into CH and CRCT respectively. This transformed observation error covariance
is assumed to be diagonal.

6.6.3 Comparison of the different schemes

Different methods for assimilating correlated observations as uncorrelated ones have been
proposed in the previous section. The impacts of these simplifications are tested in an
idealised experiment. The model state x is a two dimensional field of the variables x and
y and of a 2 × 2 units size. This field is discretised on a nx × ny grid (nx = ny = 32).
The true state is shown in figure 6.9a. This true field is supposed to be unknown and is
used for the assessment of the different schemes. A forecast is shown in figure 6.9b. It has
been obtained by adding a random error to the true field. This error follows a Gaussian
probability density function (pdf) with zero mean and the covariance between two points
(x1, y1) and (x2, y2) is given by P (x1, y1, x1, y2).

P (x1, y1, x1, y2) = 0.01 exp

(
−(x1 − x2)

2 + (y1 − y2)
2

0.32

)
(6.22)

The complete true field is observed. The observations are thus also fields of size nx × ny.
But the observations are degraded by an error following a Gaussian pdf with zero mean
and the covariance between two points (x1, y1) and (x2, y2) is given by R(x1, y1, x1, y2).
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R(x1, y1, x1, y2) = σo2 exp

(
−(x1 − x2)

2 + (y1 − y2)
2

(4∆x)2

)
(6.23)

where σo2 = 0.01 is the error variance and ∆x = 1/16 is the resolution of the field.
The correlation of the observations is thus the same in x and y directions and the
correlation length scale L is of the order of 4∆x and the redundancies in both directions
are rx = ry = 4. A realisation of the observations is shown in figure 6.9c as well as
the corresponding a posteriori state (figure 6.9d) obtained with the error covariance (6.23).

The following experiment with different observation error covariance matrixes R̂ and/or
observation vectors ŷo were carried out. For simplicity, correlation length and the size of
the domain have been chosen such that rx, ry,

nx

rx
and ny

ry
are integer values.

Non-diagonal R: The observation error covariance matrix is the true non-diagonal ma-
trix given by equation (6.23) and all observations are assimilated. The inverse of
HPfHT + R is approximated by the pseudoinverse.

ŷo = yo (6.24)

C = I (6.25)

R̂ = R (6.26)

Since the observations are not changed, the transformation operator C is the identity
matrix. It is defined in order to treat all experiments in a uniform way.

Without covariances: All observations are assimilated and the error covariance be-
tween two observations is neglected. The error variance is equal to the true error
variance.

ŷo = yo (6.27)

C = I (6.28)

R̂ = σo2I (6.29)

Inflated R: All observations are assimilated and the observation error covariance is di-
agonal. But the error variance of the observations is multiplied by rxry.

ŷo = yo (6.30)

C = I (6.31)

R̂ = rxryσ
o2I (6.32)

Subsampled observations: Only every rx observation in the x-direction and every ry

observation in the y direction are assimilated. Since the subsampling operator C
acts on a two dimensional fields of size nx × ny and it returns a subsampled field of
size nx

rx
× ny

ry
, its elements can be referred by four indexes.
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Ci1j1i2j2 = 1 if rx(i1 − 1) = (i2 − 1) and ry(j1 − 1) = (j2 − 1) (6.33)

= 0 otherwise

The assimilated observations and their assumed error covariance are thus in this
experiment given by the following expression.

ŷo = Cyo (6.34)

R̂ = σo2I (6.35)

The error covariance matrix is assumed diagonal and its diagonal elements are equal
to the error variance of the true observation error covariance matrix.

Binned observations: The mean observations of a rx × ry rectangle are assimilated.
The elements of the nx

rx
× ny

ry
× nx × ny binning operator can be written as2:

Ci1j1i2j2 =
1

rxry

if i1 − 1 = floor

(
i2 − 1

rx

)
and j1 − 1 = floor

(
j2 − 1

ry

)
= 0 otherwise (6.36)

The binned observations ŷo are assimilated as the subsampled observations with a
diagonal observation error covariance matrix.

ŷo = Cyo (6.37)

Ĥ = CH (6.38)

R̂ = σo2I (6.39)

Binned observations with correct R̂: This is a variant of the previous experiment.
Instead of a diagonal observation covariance matrix, the true observation covariance
matrix of the binned observations is used.

R̂ = E
[(

ŷo −CHxt
) (

ŷo −CHxt
)T]

= CRCT (6.40)

This matrix is generally non-diagonal but it is smaller and better conditioned than
the original error covariance matrix R. The inversion of R̂ is thus computationally
less intensive than the inversion of R. The assimilated observations and the binning
operator are the same than in the previous experiment.

2 The function floor(x) returns the largest integer that is less than x.
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For all these experiments, the a posteriori state xa, the gain K and the a posteriori error
covariance Pa are computed by the standard Kalman filter analysis based on the modified
observations and observation error covariance.

xa = xf + K
(
ŷo − Ĥxf

)
(6.41)

K = PfĤT
(
ĤPfĤT + R̂

)−1

(6.42)

Pa = Pf −KĤPf (6.43)

where Ĥ = CH. However, the analysis is only optimal if the matrix R̂ is the true
error covariance of the observations. This is only the case for the experiments with
“non-diagonal R” and “Binned observations with correct R̂”. Also the error covariance
Pa is well estimated only for these two experiments since its expression is derived for
the correct error covariances and not for the approximated error covariance used in the
experiments.

The real error covariance of the a posteriori state obtained by equation (6.41) can be
derived. By subtracting the true state from equation (6.41), one obtains the following
expression for the error of the a posteriori state:

xa − xt =
(
I−KĤ

) (
xf − xt

)
+ K

(
Cyo − Ĥxt

)
(6.44)

The covariance of this error is given by:

Pa
r = E

[(
xa − xt

) (
xa − xt

)T]
(6.45)

=
(
I−KĤ

)
Pf
(
I−KĤ

)T

+ KCRCTKT (6.46)

Note that the last term in this equation depends on the true error covariance CRCT and
not on the approximated error covariance R̂. This expression for the a posteriori error
covariance holds for any gain matrix K, whereas the equation (6.43) is strictly speaking
only valid for the observation error covariance corresponding to the observations. But
assimilation schemes for ocean model implement error space updates based on equation
(6.43). Therefore, it is also interesting to study possible the discrepancies between the
error covariance obtained from equation (6.43) and from equation (6.46).

6.6.4 Results

The a posteriori state of all experiments has been computed for a particular realisation
of xf and yo. The difference between the a posteriori state with non-diagonal R and the
truth is shown in figure 6.10a. It represents the smallest error that can be expected since
the scheme is optimal. Figures 6.10b-6.10f show the difference between the a posteriori
state of the other experiments and this optimal a posteriori state. Visually, the analysis
schemes with an inflated R, with subsampled observations and with binned observations
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Experiment tr (Pa
r) tr (Pa)

non-diagonal R 5.01 5.01

without covariances 8.65 0.73

inflated R 5.57 4.30

sub sampled observations 5.84 4.47

binned observations 5.70 4.71

binned observations with correct R 5.19 5.19

Table 6.2: This table summarises the accuracy of the analysis of the different experi-
ments given by tr (Pa

r). The last column tr (Pa) shows the error estimated based on the
assumption that the used observation error covariance is the right one.

perform all similar (figures 6.10f-6.10e). They have all a higher error in the central part
of the field. The a posteriori state assimilating binned observations with a correct error
covariance matrix is very close to the optimal analysis (figure 6.10f).

Table 6.2 shows the trace of the error covariance Pa
r and Pa. The trace of the error

covariance Pa
r is directly related to the RMS error that one would obtain if the experiments

are repeated many times with different realisations of xf and yo.

tr (Pa
r) = tr

(
E
[(

xa − xt
) (

xa − xt
)T])

(6.47)

= E

[
n∑

α=1

(
xa

α − xt
α

)2]
(6.48)

where α is index for the state vector’s components. It is not surprising that the best
result is obtained when the true observation error covariance is used. Among the analysis
schemes with a diagonal error covariance, the method consisting in inflating the error
variance gives in average the most accurate a posteriori state. Simply ignoring the
error covariance gives the worst result since the weight attributed to the observations
is too high. The approach based on subsampling gives the second worst result. This
is attributed to the fact that the rejected data contained also useful information. The
approach with binned observations takes all observations into account and leads therefore
to better results than the subsampling. Even better results than the inflation of the error
covariance are obtained when binned observations are assimilated with the corresponding
error covariance CRCT . This error covariance is not diagonal but it is smaller and
better conditioned than the initial error covariance matrix R. For an assimilation scheme
capable of assimilating correlated observations, this last option is thus an interesting
alternative to the inversion of a poorly conditioned m×m matrix.

As expected, this total error variance tr (Pa) is equal to the error variance tr (Pa
r) of the

a posteriori state for the first and the last experiments. However, the error variances of
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Figure 6.9: True, a priori , observed and a posteriori field of an experiment assimilation
of synthetic data. The forecast and the observations are obtained by adding noise to the
true field. The analysis combines forecast and observations based on their respective error
covariances.

the experiments with diagonal R are generally underestimated. The discrepancy between
the estimated error variance and the true error variance is the highest for the experiment
ignoring the correlation.

For the assimilation method used in the present work the a posteriori error covariance is
not used since the Pf is prescribed to be constant. For assimilation schemes propagating
the error covariance from one assimilation cycle to the next, a correct a posteriori error
covariance Pa is necessary. Further research is necessary to understand why these error
variances are underestimated. A possible solution might be the fine tuning of the inflation
factor or the subsampling and binning rate such that the a posteriori error variance is
well represented.

6.7 Calibration

The success of a data assimilation experiment depends greatly on the specification of
the error covariances of the model forecast and the observations. The forecast error
covariance has been specified by the dominant error modes of an ensemble as it has
been explained in section 6.1. The present assimilation implementation can handle only
uncorrelated errors in observations.
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(xa  non−diagonal R)−(xt  true field) (xa  ignoring covariances)−(xa  non−diagonal R)

(xa  inflated diagonal R)−(xa  non−diagonal R) (xa  subsampled obs.)−(xa  non−diagonal R)

(xa   binned obs.)−(xa  non−diagonal R) (xa   binned obs and correct R)−(xa  non−diagonal R)
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Figure 6.10: In panel (a), we see the difference between the optimal a posteriori and
the true state. The other panels show how close the a posteriori states of the simplified
schemes are to this optimal estimation.
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The error variances of the observations have an important impact on the analysis. If
the error variance is underestimated, the analysis deteriorates the unobserved variables.
In the case of overestimation, the information in the observations is not sufficiently
transferred into the model.

The assumption of uncorrelated errors might be verified for the instrumental error, but
this is not the case for the representative error part. If the space correlation of the
observations is not taken into account explicitly, the error covariance of the observations
should be increased:

R′ = r diag(R) (6.49)

where 1/r is the fraction of non-redundant scalar observations. For a 2D observation
data set with a horizontal resolution of ∆x and ∆y, we can estimate this fraction by the
horizontal correlation length Lx and Ly:

r ∼ Lx

∆x

Ly

∆y
(6.50)

A rationale for this parameterisation of the observation error covariance was given in
section 6.6. The correlation in the observations can also be reduced by subsampling or
binning the observations. But in this approach, the spatial resolution of the observations
is degraded and their information content about the position of a front or an eddy for
instance, is reduced.

6.7.1 Calibration of the 10 km SST and SSH

The error covariances of the 10 km resolution SST and the SSH were jointly calibrated.
These data were assimilated in the Mediterranean Sea model with different observation
error covariances without the nested models. The best error covariances are assumed to
be those who produce the smallest RMS error between the SST and SSH observations and
the one-week forecast. The observations error covariances are supposed to be diagonal
and constant in space. Two variables have been calibrated, noted RSST and RSSH and two
diagnostics, i.e. the mean forecast errors of the SST and SSH are computed. Table 6.3
summarises several experiments carried out with different values of RSST and RSSH.
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RMS SST RMS SSH

Free model run 1.147 ◦C 8.60 cm
√

RSST = 1.25 ◦C and
√

RSSH = 3.75 cm 0.913 ◦C 8.12 cm
√

RSST = 1.875 ◦C and
√

RSSH = 3.75 cm 0.921 ◦C 8.10 cm
√

RSST = 2.5 ◦C and
√

RSSH = 3.75 cm 0.937 ◦C 8.03 cm
√

RSST = 1.875 ◦C and
√

RSSH = 2.5 cm 0.934 ◦C 8.13 cm
√

RSST = 1.875 ◦C and
√

RSSH = 5 cm 0.918 ◦C 8.18 cm

Table 6.3: Different experiments for the calibration of RSST and RSSH. The row in grey
marks the values adopted for the SST and SSH assimilation experiment.

The interaction between these two parameters is quite complex. A decrease of RSST

improves the SST forecast but it degrades the SSH forecast. For
√

RSST = 1.875 ◦C,
the SSH forecast is optimal for

√
RSSH = 3.75 cm. Smaller and greater values for

altimetry error covariance reduce the accuracy of the SSH forecast. On the other hand
the best SST forecast has been obtained with the lowest SSH constrain. A reasonable
compromise between SST and SSH forecast is obtained for the values

√
RSST = 1.875 ◦C

and
√

RSSH = 3.75 cm. These error covariances are used in the following assimilation
experiments.

The error covariances suggested by these experiments depend on various parameters,
notably the data and their post-processing and the model error covariance. Therefore,
it is expected that these error covariances of the observations cannot be applied without
caution to other cases.

6.7.2 Calibration of the 1 km SST

The assimilation of the SST will modify the vertical structure according to the error
covariances. Error on these covariances can degrade the vertical structure of the water
column. This is mainly a problem of the error covariance between the SST and the sub-
surface properties. But once the best effort has been made to quantify these covariances,
we can reduce the problem of extrapolation based on uncertain error covariances by
choosing carefully the error variance of the SST observations.

In order to assess the impact of the SST assimilation on the vertical temperature and
salinity structure, the analysis was compared to temperature and salinity profiles of the
Sirena 2000 cruise carried out by the Saclant Centre. The 1 km SST of the 24 August
2000 has been assimilated in the Ligurian Sea model with different error variances and
the mean RMS error with the 33 temperature and salinity profiles within a centred time
window of 1 week. The model background state of the 24 August 2000 has been obtained
from a preliminary model integration with SST and SSH assimilation.
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Figure 6.11: The RMS difference between the background and the 33 temperature (upper
panel) and salinity profiles (lower panel) are shown as a continuous horizontal line. On
each panel, the dotted line is the RMS difference between the analysis for different SST
error variances and the measured profile.
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For very high error variances, there is of course no difference between the background
and the analysis. In the other extreme of error variance range, the assimilation degrades
the vertical structure both in temperature and salinity. The error in density is minimum
for
√

R′
SST = 70 ◦C. This error variance includes redundancy in the data. If the error

variance of SST observations (with explicit correlation) is assumed to be 1 ◦C2, one obtains
from equation (6.50) with ∆x = ∆y = 1 km and Lx = Ly, a correlation length of 70 km:

Lx = ∆x

√
R′

SST√
RSST

= 70 km (6.51)

In the Ligurian Sea the correlation length of the SST is about 80 km. This correlation
length represents an upper bound for the error correlation length since obviously only a
part of the SST can be treated as observation error. The correlation length is therefore
consistent with the optimised error variance including the redundancy.

6.8 Results

Figure 6.12 shows the SST of the 31 August 2000 obtained from the free model run
(i.e. the model without assimilation) and the model run with assimilation as well as
the observed SST. The SST of the model run without assimilation is too warm in the
Ligurian Sea and too cold in the Eastern part of the Gulf of Lions compared to the
observations. In particular, the water of Rhone plume is too cold and spreads over an
extended area.

In the contrary, the forecast SST is closer to the observations. The mean temperatures of
the Ligurian Sea and the part of the Gulf of Lions and the Tyrrhenian Sea match already
well the observations. This is due to the beneficial impact of the previous assimilation
cycles, which prevent the model to drift too far away from the observations. The a
posteriori state combines the model forecast and the observed SST. The assimilation
has changed the temperature distribution in the Ligurian Sea: warmer water masses are
found near the coast and colder waters in the interior basin. This is indeed the typical
temperature distribution in the Ligurian Sea. This temperature structure is also present
in the free model run but it is about 1 ◦C warmer than the observed SST.

The RMS errors between the results of a model integration without assimilation and the
1 km SST of the Provençal Basin, the 10 km SST of the Mediterranean Sea and the
altimetry tracks are shown in figure 6.13. The mean RMS error between observed SST
and model SST without assimilation is 1.45 ◦C for the Provençal Basin and 1.14 ◦C for
the rest of the Mediterranean Sea. The SST is very sensitive to the atmospheric forcings
and the implementation of these forcings. The reasonable performance of the free model
for reproducing the observed SST is attributed to the ECMWF forcings and the bulk
formula parameterisation of the heat fluxes. Tests realised with NCEP forcings and
non-interactive heat fluxes showed poorer results.
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Figure 6.12: Sea surface temperature of the 31 August 2000 (9th assimilation cycle). The
model results without assimilation (free), the model a priori state (forecast), the model
a posteriori state and the assimilated observations are shown.
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For the model run with assimilation, two estimations at each observation time exist:
the forecast and the analysis. At each analysis step the model comes closer to the
observations. Obviously, only the RMS error of the forecast is a comparison with
independent data. This is not the case for the RMS error of the analysis. For all
observations, the RMS error of the model forecast is in average lower than the RMS error
of the free model run. This shows the beneficial impact of the previous assimilation cycles.

The SST forecast is always better than the SST of the free model except in the Provençal
Basin for 24 August 2000 (8th assimilation cycle). This is related to a strong surface
warming event in this region present in the observed SST and in the atmospheric fluxes.
But the warming in the atmospheric fluxes is delayed compared to the observed SST.
Even after the observed SST has reached its maximum, the atmospheric fluxes continue
to warm the sea surface. The previous SST assimilation has caught up the effect of the
too weak warming. The model with data assimilation overshoots the observed SST when
the heating in the ECMWF forcing begins. In the contrary, the free model run, which is
colder than the observed SST during the first half of August, comes fairly close to the
observed SST after the atmospheric heating event. A delay in the atmospheric forcings
is a time-correlated model error and in most assimilation approaches time-correlation is
neglected.

For interpreting the errors of the sea surface height, the fact that the observations were
not filtered should be taken into account. A part of the SSH signal variance is noise
and increased the RMS error between the model and observations. A “perfect” model
forecast would not produce a zero RMS error. The standard deviation of the noise with
spatial scales smaller than the model grid size (figure 6.8) is a lower bound of the RMS
error. Instead of filtering the data, we prefer to assimilate the raw data and to filter
the observations by the assimilation procedure itself. But this implies that the RMS
error contains also the variance of the observation errors, for which figure 6.8 provides an
estimation.

During the first month, the SSH predictions of the model with data assimilation are
similar to the free model run. The SSH forecast of the 3 August 2000 is even worse than
the predicted sea surface elevation of the free model. But after this date, the improvement
of the forecast due to the assimilation of the SSH is clear. The overall average RMS of
the SSH forecast with assimilation is also better than the SSH forecast of the model run
without assimilation. Further validation of the model can be found in Alvera-Azcárate
et al. (2004).

6.9 Sirena Cruise

The model was also compared to the observations of the Sirena Cruise. This cruise was
carried out by the Saclant Centre (La Spezia, Italy) starting on the 22 August 2000
until the 30 August 2000. 51 CTD cast were taken in the Ligurian Sea at the positions
shown in figure 6.14. At some locations two casts separated by several hours were realised.
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Figure 6.13: RMS error between the model results and the observations. “Free” is the
model run without assimilation and “Assimilation” is the model integration with SST
and SSH assimilation. The circles are the a priori estimations (or forecast) and the dots
are the a posteriori estimations (or analysis).
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The model temperatures of the corresponding day were spatially interpolated on the
location of the profiles. Figure 6.14 shows the RMS error integrated over the depth of
the model run with and without assimilation. The assimilation degrades the vertical
structure of the model. Especially in the interior of the basin, the model with assimilation
produces poorer results.

Figure 6.15 shows the RMS error of the free model run and the model simulations with
SST and SSH assimilation. The error is mostly located at the thermocline. In fact, the
thermocline of the model (with and without assimilation) is too deep in comparison with
the observations. Since the thermocline represents a temperature jump of the order of 5
to 9 ◦C, a shift in the thermocline depth produces a large RMS error. In the free model,
the mixed layer is too deep and the assimilation makes the mixed layer even deeper. This
effect is even more critical in the interior of the Ligurian Sea where the overestimation of
the thermocline depth is the highest.

These problems seem to be related to the covariance between the SST and SSH and
the variables at depth. In the initial ensemble, the vertical correlation length of the
temperature was prescribed to 20 m which is an estimation of the mixed layer depth during
summer. Even after the integration of two weeks of each ensemble member this vertical
correlation length is still dominant. However, in the Ligurian Sea during summer 2000
the mixed layer depth is as shallow as 10 m in some areas. The assimilation projects the
surface temperature to a depth of 20 m and degrades the representation of the thermocline.
Future research is necessary to have a better representation of the initial ensemble of
members.

6.10 Surface velocity

Besides the statistical measures assessing the impact for the assimilation, it is also
interesting to look at the impact on the oceanographic structures. Figure 6.16 shows the
surface currents of the high resolution model with and without assimilation. The salinity
is also displayed in order to locate the position of the fronts. The Northern Current is
the main feature in the Ligurian Sea. Its baroclinic instabilities are the principal source
of mesoscale activity. In the model run without assimilation, the Northern Current is
detached from the coast at 43◦40’N and 7◦30’E. According to observations from Albérola
et al. (1995) and Sammari et al. (1995), the Northern Current follows in this region the
French coastline. This unrealistic detachment is accompanied with a long and straight
front clearly visible in the salinity field. When the Northern Current of the free model
reaches the southern boundary of the model, it gets back to the coast.

In the model run with assimilation, the path of the Northern Current is much better
represented. It is confined to the coast as in the observations. Also meandering structures
are reproduced by the model. The observed meanders have a typical wavelength of 30-
60 km (Sammari et al., 1995). The size of meanders reproduced by the model is in
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Figure 6.14: Horizontal distribution of the RMS error of the free model run and the model
run with assimilation compared to the profiles of the Sirena Cruise. The RMS error is
computed by summing over the depth.
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Figure 6.15: Vertical distribution of the RMS error of the free model run and the model
run with assimilation compared to the profiles of the Sirena Cruise. The RMS error is
computed by summing over all stations and over 10 m depth intervals.



150 Chapter 6. Assimilation of SST and SSH

Free run

 30’    7oE  30’    8oE  30’    9oE 

 40’ 

  43oN 

 20’ 

 40’ 

  44oN 

 20’  0.5

Assimilation

 30’    7oE  30’    8oE  30’    9oE 

 40’ 

  43oN 

 20’ 

 40’ 

  44oN 

 20’  0.5

37.8 37.85 37.9 37.95 38 38.05 38.1 38.15 38.2 38.25 38.3

Figure 6.16: Surface velocity and salinity in the Ligurian Sea of the 25 July 2000.

good agreement with these observations. Velocity and salinity are not assimilated and
the improvements visible on the figure 6.16 are thus the response of the model to SST
and SSH assimilation. The assimilation has thus also a beneficial impact on the overall
representation of the ocean processes in the Ligurian Sea.

6.11 Conclusions

The present chapter showed the application of a Kalman filter based assimilation scheme
to a system of two-way nested models. Implementation aspects specific to the two-way
nested model were highlighted and discussed.

Since the nested models are strongly coupled through the dynamics, the state vector for
the data assimilation encompasses all nested models. The feedback between the nested
models relates linearly the variables of the coarse model grid in the overlapping domain
to the variables of the fine model grid. The redundancy in the state vector is not a
problem as long as the covariance between the redundant variables and the others is
correctly specified. This is the case when the covariance is estimated from model results
either directly by an ensemble of model states or by the empirical orthogonal functions
(EOFs) of this ensemble.

EOF decomposition needs the introduction of a norm in the state space. For variables
with different units and discretised on a non-regular grid, the Euclidian norm is unac-
ceptable since the result would depend on the units and discretisation chosen. A norm
based on the sum of potential energy and available potential energy was first applied to
the EOF computation. Model nesting has also an implication on the choice of the norm
since the variables in the overlapping domain have to be counted only one time.
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A novel method for choosing the error variance of the observations is also presented.
This method resembles closely to the cross-validation technique. Unassimilated vertical
temperature and salinity profiles are used to assess the impact of the assimilation of
sea surface temperature (SST) at 1 km resolution. It has been shown that when the
correlation in this data set is neglected, the weight given to the observations is by far too
high. But the correlation in the observations can be included by inflating the weight of
the error variance by the proportion of redundant data. The method for determining the
error variance of observations includes this inflation factor.

The improvement of the SST and sea surface height (SSH) forecast due to the assimilation
is also shown. For all weeks except one, the model with SST assimilation provides better
SST forecasts in the Provençal Basin than the free model run. The forecast of the surface
elevation is also improved in average. The comparison of forecasts and observations
not yet assimilated helps to assess the beneficial impact of the previous assimilation cycles.

While the vertical structure is degraded by the assimilation, the circulation in the Ligurian
Sea is better represented in the model run driven by the SST and SSH assimilation. The
assimilation has corrected the path of the NC and displaced the Liguro-Provençal frontal
system such that the model corresponds to the observed oceanographic characteristics of
this zone.



152 Chapter 6. Assimilation of SST and SSH



Chapter 7

Hybrid modelling system

Data assimilation is traditionally used to combine model dynamics and observations in
a statistically optimal way. Assimilation of observations improves therefore hindcasts
and nowcasts of the ocean state than otherwise obtained by the model alone. The
observational constraints are necessary to reduce uncertainties and imperfections of the
ocean model. Due to the obvious lack of future observations, the model forecast cannot
be controlled by observations and the predictive skill degrades as the forecast time lag
increases. The error growth is not only caused by the chaotic nature of the system but
also by the biases and drifts of the model. The later part can be reduced by considering
different models with different imperfections. Data assimilation provides the statistical
frame for merging different model results.

In this chapter, we will first introduce the statistical SOFT predictor (Álvarez et al.,
2004). The applied methodology as well as the accuracy of its forecast will be briefly
discussed. Then the SST predicted by this SOFT system will be assimilated into the
GHER ocean model. The skill of this hybrid modelling system composed of the GHER
primitive equation model and the statistical predictor will be assessed. Finally, we will
discuss the results and make conclusions in the perspective of operational forecasts.

7.1 Statistical Model

The system of nested models described in the chapter 2 and3 was coupled with the
statistical model of Álvarez et al. (2004). This statistical model is applicable to ocean
properties, which are measured at a high temporal and spatial coverage. Satellites sensors
meet these coverage requirements. The statistical predictors, also called satellite-based
ocean forecasting (SOFT) systems, have been applied to remote sensed surface properties
such as sea surface temperature (SST) and sea level anomaly.

This model is based on an EOF decomposition and on a genetic algorithm. The EOF
decomposition reduces significantly the degrees of freedom in the system and therefore
the number of variables to predict.
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7.2 EOF decomposition

The m× n data matrix D contains a time series of spatial fields. The first index i is the
space index (1 ≤ i ≤ m) containing the two horizontal dimensions and the second index j
is the time index (1 ≤ j ≤ n). The EOFs are not directly compute from this data matrix
but from the anomalies X based on a given mean M.

X = D−M (7.1)

where X and M are m × n matrices. The mean can be for example the time mean. In
this case all columns of M are the same and are equal to the time average of the data:

Mij =
1

n

n∑
k=1

Dik ∀j ∈ {1, . . . , n} (7.2)

The matrix M can also represent the space mean:

Mij =
1

m

m∑
k=1

Dkj ∀i ∈ {1, . . . ,m} (7.3)

Another values of the mean M, such as the time and space mean or a seasonal climato-
logic mean, can also be taken depending on the kind of variability which one wants to
analyse by the EOF decomposition.

The anomalies X are decomposed into spatial and temporal variability patterns by a
singular value decomposition:

X = UXΣXVT
X (7.4)

where UX is a m × m orthogonal matrix containing in its columns the spatial EOFs.
The columns of the n × n orthogonal matrix VX are the temporal EOFs. The diagonal
elements of the m× n matrix ΣX are the ordered singular values starting with the most
important singular value. Other elements of ΣX are equal to zero.

The spatial EOFs are the eigenvectors of the matrix XXT . This matrix is, up to a factor,
the spatial covariance matrix based on a time series of states if the time mean (7.2) was
subtracted.

XXTUX = ΣXΣT
XUX (7.5)

The data at a given time can be viewed as a linear combination of the spatial EOFs,
which represent spatial patterns of variability:

Dij = Mij +
m∑

k=1

AkjUXik (7.6)

where Akj is the amplitude of the kth EOF at time j. The EOF amplitudes can be
obtained directly by projecting the data at a given time on the spatial EOFs.
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A = ΣXVT
X = UT

XX (7.7)

The time series formed by the EOF amplitudes are orthogonal vectors:

AAT = ΣXΣT
X (7.8)

If the time mean has been subtracted to compute the anomalies X, then the mean of
each EOF amplitude time series is zero. In this case the product AAT is the time
covariance between the different EOF amplitudes and we see that the amplitudes for
different EOFs are not correlated in time. An EOF analysis can therefore help to identify
different uncorrelated physical processes and to split the evolution of a system into these
uncorrelated modes. It is particularly efficient when the dynamics of the system can be
related to “standing waves”.

However, the physical interpretation of the EOF reaches its limit since different processes
at similar frequency cannot be separated. An EOF pattern can thus contain the signal
of two processes that are dynamically not related. A high correlation does not imply a
cause-effect-relationship. The dynamics of nonlinear systems such as the baroclinic ocean
cannot in general be separated into modes due to the interaction between the different
scales. The orthogonality constraint between the EOFs makes also the interpretation of
the spatial pattern difficult.

In practice, the EOF analysis is limited to a small number r of the eigenvectors corre-
sponding to the leading eigenvalues:

Dij = Mij +
r∑

k=1

AkjUXik + εij (7.9)

where εij is the truncation error introduced by limiting the number of EOFs. One can
show that no other of r dimensional set of basis functions can give a total truncation
error ‖ε‖2 = tr(εT ε) less than the error obtained by the EOFs (see appendix E).

Other basis functions used in signal analysis are for example Fourier modes and wavelets.
In oceanography, the irregular coastline makes however the application of spatial Fourier
modes a difficult task. Wavelets have a compact support and the wavelet coefficients in
the interior of the ocean are not affected by the boundaries. However, near the coast a
special treatment is required (Alvera-Azcárate et al., 2004).

For all characteristics of the spatial EOF a similar property can be derived for the
temporal EOF since there is a perfect symmetry between temporal and spatial EOFs. In
general, it is sufficient to apply the results to the transposed data matrix DT . The time
average becomes a space average and vice versa.

Álvarez et al. (2004) carried out a truncated spatial EOF decomposition of remote sensed
SST of the Ligurian Sea. The amplitudes of the EOFs were filtered by a singular spectrum
analysis in order to extract the deterministic part of the signal. For a deterministic time
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series aj, j = 1, . . . , n, the Takens’ theorem (Takens, 1981) proves the existence of a
smooth map γ : IRm → IR relating the elements of the time series by:

ak+1 = γ(ak, ak−1, ak−2, . . . , ak−m) (7.10)

where m is the embedding dimension. Álvarez et al. (2004) determined this function γ
for each EOF amplitude time series. The genetic algorithm approximating γ is called
DARWIN (Álvarez et al., 2000; Álvarez et al., 2001) and is based on the past evolution
of the studied system. The smooth map can also be approximated by neuronal networks
(Rixen et al., 2001a).

The EOF analysis of weekly SST from 1 March 1993, to 4 October 1999 serves as training
set in order to obtain a statistical predictor of the SST in the Ligurian Sea. Once the
function γ fits sufficiently well the evolution of this training data set, γ can be used to
predict the EOF amplitudes. From the predicted amplitudes, the complete SST scene is
reconstructed by using the spatial EOFs.

7.3 Application of the SOFT predictor

Operational models run basically in two modes: the hindcast mode and the forecast
mode. They are illustrated in figure 7.1a. In the former mode, the model assimilates the
available data to obtain a model state as accurate as possible at the end of the hindcast.
When the model has reached the present time instant, the run turns into the forecast
mode. In this phase, no observations constrain the model. Eventually climatologic data
is assimilated in order to control the model integration. For example, the model SST
is nudged towards the climatologic SST to correct the atmospheric heat fluxes. In the
MERCATOR system, climatologic data are also assimilated in depth when the difference
between model and climatology is too large (Bahurel et al., 2004).

The climatology has some natural drawbacks. It does not contain extreme or rare events.
If the model predicts such an event, the assimilation of the climatology will attenuate
it. Real and unreal events will be affected. The SOFT predictor can be integrated in
such operational models as shown on figure 7.1b. The model forecast can be constrained
by predicted ocean properties. Here we focus on the prediction of SST. One question is
if the assimilation of predicted SST gives more skilful forecast than the assimilation of
climatologic SST.

7.4 Assimilation Experiments

In order to assess the impact of the assimilation of predicted SST, five different exper-
iments were carried out. All the experiments start the 5 July 2000 and simulate the
dynamics for 60 days. They use the same initial conditions and the atmospheric forcings.

Free: The system of nested models is run without data assimilation but with realistic
initial conditions and ECMWF atmospheric forcings.
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(b)

Assimilation of observations Assimilation of
climatologic data

T = 0

Hindcast Forecast

(a)

Assimilation of observations Assimilation of
predicted SSTSOFT

T = 0

Hindcast Forecast

Figure 7.1: Application framework for the SOFT predictor. Instead of performing an
unconstrained model forecast or a model forecast with assimilation of climatologic data
(panel a), the forecast of the SOFT system can be assimilated into the operational model
during the forecast (panel b).

AssimObs: The hydrodynamic model is constrained by weekly remote sensed SST from
DLR. This model run intents to validate and to assess the capabilities of the system
of nested models.

AssimPred: In this experiment, the hydrodynamic model assimilates the SST from the
statistical predictor of Álvarez et al. (2004). The objective is to study model be-
haviour when it is constrained by the result of another model and to quantify the
expected benefit of assimilating predicted SST in comparison with no assimilation
and with the assimilation of observed SST. The 60-days model run only assimilates
predicted SST but each SST prediction used the observed SST of the previous weeks.
The model does not make a 60 days forecast without any influence of observations
within these 60 days. But the model results of the 14 days following an analysis
step do not depend on any observations within these two weeks.

AssimAmpl: The predicted SST is a linear combination of the dominant spatial EOFs.
This implies that the rejected EOF components always have zero amplitude. The
SST of the model, however, can contain components of these rejected EOFs. When
assimilating the reconstructed EOF field (AssimPred) the variance of these compo-
nents is reduced by the assimilation of the predicted SST that contains no variance
at all in this space.
The approach in this experiment AssimAmpl consists in leaving these components
as “unobserved” by assimilating directly the predicted EOF amplitudes and not the
complete SST. The observation model makes therefore the following operation on
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the state vector xf :

af = UT
X

(
Hxf − ySST

m

)
(7.11)

where the vector af contains the EOF amplitudes predicted by the hydrodynamic
model and ySST

m is the annual mean SST in the Ligurian Sea used to compute the
spatial EOFs UX. The matrix H is the observation operator extracting the SST
from the model state vector. This operator is the same than the one used in the
two previous experiments.

AssimClim: In this experiment, the interpolated SST from the MEDAR climatology
(Rixen et al., 2001b) is assimilated into the model. For consistency with the other
experiment only the SST of the Ligurian Sea is used.

All three assimilation experiments use the same error covariance matrix described in
6.1. The covariance localisation with the same parameters than in 6.3.3 was also used
for the experiments AssimObs and AssimPred. The covariance localisation technique is
based on the distance between the model grid point and each single scalar observation.
However, EOF amplitudes are not local observations since they involve the temperature of
all surface grid points of the domain. For the assimilation of the amplitudes, the original
global assimilation scheme (4.161) was used.

7.5 The predicted SST compared to climatology and

persistence

The SST predictor produced SST forecast of the Ligurian Sea from 11 October 1999, to
28 August 2000. The overall skill assessment of the method compared to persistence of
the observations during this period was made by Álvarez et al. (2004). But it is useful
to take a closer look to the performance of the predictor in the time interval of the data
assimilation experiments since Álvarez et al. (2004) showed that the forecast skill of the
predictor depends on the seasons. Figure 7.2 shows the RMS error of the predicted SST,
the SST observed one week ago (persistence) and the climatologic SST compared with
the observations. The monthly MEDAR climatology is interpolated linearly to obtain
weekly SST of the Ligurian Sea.

During this time period the predicted SST is substantially better than the persistence or
the climatology. The RMS error of the predictor is also better than the RMS error of the
hydrodynamic model (figure 7.3), which justifies the assimilation of the predicted SST.

The climatology is too cold, especially at the end of the studied period. Interannual
variations have an important impact on the SST. These variations ignored by a monthly
climatologic cause the large discrepancy between the climatology and the observations.
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7.6 Results

The RMS error as a function of time between the observed SST and the five experiments
are shown in figures 7.3 and 7.4. At each observation time, two estimates of the ocean
state exists for the model run with assimilation: the model forecast (xf in the standard
notation) and the analysis (xa). The time averaged RMS error between the observed SST
and both estimates for the four assimilation experiments and the free model integration
are summarised in table 7.1.

Forecast Analysis

Free 1.111 -

AssimObs 1.031 0.580

AssimPred 1.037 0.732

AssimAmpl 1.063 0.883

AssimClim 1.096 1.479

Table 7.1: The time averaged SST RMS error of the different experiments

The RMS error between the observed SST and the analysis of the model run with
observed SST assimilation, AssimObs, is obviously not a comparison with independent
data. But all other RMS errors of table 7.1 are in fact skill assessments based on
independent data since the model forecast at a given time has not yet been influenced
by the observations of this instant and the analysis of the experiments AssimPred and
AssimAmpl assimilate the predicted SST of the analysis time. This predicted SST is also
independent of the observed SST at the same time.

The model without assimilation predicts the SST with an average RMS error of
1.111 ◦C. The improvement on the forecast of the experiment AssimObs shows
the beneficial impact of the previous assimilation cycles. The standard deviation of
the error of this experiment is in average 0.08 ◦C lower that the error of the free model run.

The forecast and the analysis of AssimPred are also better in average than the free model.
The RMS of the forecast is reduced by 0.07 ◦C and the RMS of the analysis even by 0.4 ◦C.

The best results are obtained of course when assimilating the observations. But these
are not available in a real operational forecast. The error reduction of the forecast in
AssimPred is however comparable to the improvement of the forecast of experiment
AssimObs. The RMS error of the analysis in AssimObs is the lowest since the observations
have been assimilated. The improvement of the analysis in this experiment can be
achieved in real operational forecast since experiment AssimPred does not use the
observed SST. The difference between the forecast of AssimObs and the analysis of
AssimPred highlights therefore the benefit of the statistical predictors to constrain ocean
models.
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Figure 7.2: The RMS error based on the observed SST of the SOFT system, persistence
and climatology.
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Figure 7.3: RMS error between the observations and the SST of the free model run, model
run with assimilation of observed SST and of predicted SST. The dots correspond to the
RMS error of the analysis and the circles to the forecast.
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Figure 7.4: RMS error between the observations and the SST of the free model run and
the model run with assimilation of the MEDAR SST. The dots correspond to the RMS
error of the analysis and the circles of the forecast.

The AssimAmpl experiment produced similar results than the AssimPred experiment.
However, the improvement of the AssimAmpl experiment is not so important than
the assimilation of the reconstructed SST. This difference suggests that the errors
of the rejected EOF amplitudes are not negligible. In particular, the variance of
the model SST within this space is too high and the concentration of the SST vari-
ance in the space formed by the dominant EOFs improves the result. The assimilation
of EOF amplitudes is also technically more difficult since it implies non-local observations.

Large differences between the climatologic SST and the observed SST exist. Thus, the
failure of the experiment AssimClim is not a surprise. Most of the time, the model forecast
is closer to the observations than the climatology. The assimilation of the climatologic
SST takes therefore the model away from the observations. This is in particular the case
for the strong warming event at the end of the assimilation period. This warming event
is absent in the climatology but it is present in the atmospheric heat forcings. Therefore
the free model is able to predict this event and the assimilation of the climatologic SST
degrade substantially the model result during this period.

7.7 Discussion

The SOFT predictor relies on a given number of past observations, the embedding
dimension. For SST prediction in the Ligurian Sea, Álvarez et al. (2004) used an embed-
ding dimension of 8. After assimilating 8 weekly SST images of the Ligurian Sea should
not the model forecast be better than the forecast of the statistical predictor? If the
hypotheses of the Kalman filter are verified, this should be the case for a reasonable good
ocean model, since the Kalman filter should provide the best estimate of the ocean state
taken into account the dynamics and all previous observations. But in ocean modelling
these hypotheses are not exactly satisfied. For instance, the dynamics are nonlinear,
model and observations are sometimes biased, the model error is correlated in time and
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the error covariances specified in the assimilation scheme are only approximations.

In particular, the reduced rank approximation of the error covariance matrix can only
take into account model error within a certain error subspace. Any error outside of this
space is ignored. A part of the signal in the observations is therefore systematically
rejected.

The manifold of the model trajectory is generally different from the manifold of the
true dynamics. This can be highlighted by comparing the model climatology and the
climatology based on observations. Often the model error covariances are not well
specified and the model error bias and its time correlation are neglected. This leads
to the situation where the model falls back on its manifold after assimilation (Judd
and Smith, 2001). In this context, it makes sense to use different models with different
dynamics biases and drifts. If the models are independent, one can suppose that by
merging the different model results, the problems associated to the biases and drifts are
reduced.

The SOFT system forecasts the SST using an algebraic function of the m past SST
scenes of the Ligurian Sea. The operations (the four elementary operations +,−, ∗, / are
implemented) of this function and their order are determined by genetic algorithm. This
approach is very different from ocean modelling based on differential equation such as
the primitive equations. Therefore, they can be considered as independent. The models
are independent with respect to their dynamics. However, they are influenced by the
same observations in this case. After taking into account m SST images of the Ligurian
Sea, the forecast of the primitive equation model with SST assimilation and the forecast
of the statistical predictor are affected by different model errors which can be reduced by
merging them via data assimilation.

Of course, this procedure is not limited to two models. The Kalman filter analysis can be
extended to any number of independent models. An option that has not be considered
here is to use the analysis as initial state of the statistical predictor. In this case, the
model coupling would be bi-directional. But it is not clear how the statistical model
behaves when it is fed with the SST of the analysis. The statistical model was “trained”
with observed SST with different scales and noise characteristics than the SST of the
analysis.

7.8 Conclusions

The main conclusion of this work is that the forecasts of a statistical predictor like the
SOFT system developed by Álvarez et al. (2004) can be used to improve the forecast
skill of models based on primitive equations. The SST obtained by the model with
assimilation of the predicted SST is closer to the observations than the SST forecast
by the model without assimilation. The accuracy of the SST forecast was improved
by 0.3 ◦C when the forecast of the run AssimObs is compared to the analysis of the
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experiment AssimPred. This corresponds to a 30% reduction of the average RMS error.

The SST is a key parameter for the heat exchange between ocean and atmosphere. In
our experiments, the assimilation of predicted SST appears to correct also the errors
and biases in the atmospheric heat fluxes. The assimilation of the results obtained from
statistical predictors might have an application for operational forecast. Currently, the
operational forecasts beyond the present time instant are unconstrained model runs. But
the systematic errors due to biases can be detected and therefore corrected by comparing
the forecasts with other model. By assimilating the forecasts of specialised statistical
predictors, a model can still be constrained even in forecast-mode, and this reduces the
error growth due to model’s imperfections.

Another way to constrain a forecast model run is to assimilate climatologic SST. It is
a common practice in ocean modelling to nudge weakly the model towards climatologic
SST to reduce the long-term impact of biased heat fluxes. Since the SST is a highly
variable parameter, the assimilation of climatologic SST does not improve the capacity
of the model to forecast SST. In the present case, the model without assimilation gives
a better SST forecast than the interpolated climatologic SST. For short-range forecasts,
the SST predicted by the SOFT system is therefore a better choice.

To our knowledge, it is also the first time that a data assimilation method is used to
combine the results of two different models. Traditionally, data assimilation merges
observations with model dynamics. Here we show that in the frame of data assimilation,
it is also possible to combine the results of different models of very different natures, i.e.
statistical model and a primitive equation model. The improvements on the prediction
skill of this hybrid system are encouraging, but further research is necessary to assess
and to control the impact of the assimilation on the unobserved model state vector (see
also the model validation part of chapter 6).
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Chapter 8

Summary and conclusions

The model nesting has been implemented successfully in a realistic case with two suc-
cessive grid refinements. A coarse resolution model of 1/4◦ covering the Mediterranean
Sea has been implemented. In this model, a Liguro-Provençal model with a grid refined
by a factor of 5 in both horizontal dimensions has been nested. The resolution of this
model has been again refined by a factor of 3 in the Ligurian Sea. The coupling between
the nested models is bidirectional, i.e. boundary conditions of the nested models are
obtained from the next coarser resolution model and the variables in the overlapping
domains are replaced by the average field of the nested child model.

A novel interpolation scheme for boundary conditions has been applied to scalar fields
and to the normal velocity is developed. This interpolation scheme conserves the volume
transport and produces a boundary condition, which is as “smooth” as possible. The
interpolated velocity does not present any discontinuity and minimises the square of the
second derivative integrated along the nesting boundary. It was verified that the whole
system of nested models conserves the water volume. However, temperature and salinity
are imposed to the fine grid model as Dirichlet boundary condition. The total heat and
salt are thus not conserved by the nesting procedure.

The benefit of the two-way nesting compared to the one-way nesting has been highlighted.
The temperature structure of the Northern Current, the main dynamical feature in the
Ligurian Sea, has been studied for both nesting strategies. The Northern Current is
better represented in the two-way nesting than in the one-way nesting in terms of mean
position and variability. It is interesting to note that also in the Gulf of Lions, which is
located outside of the 1/60◦ resolution domain of the Ligurian Sea, the representation of
the Northern Current is better in the two-way nesting case than for the one-way nesting
approach. The improvement due the high resolution is thus propagated through the
feedback between the nested models along the downstream path of the Northern Current.

It is known that an abrupt change in the horizontal resolution of the model can lead to
wave reflection since the wave speed in the model depends on the resolution (Miyakoda,
2002). Structures with a wavelength of two times of the horizontal grid spacing are
found in the nested model at the boundary with the parent model. These structures
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cannot be represented on the coarse resolution model grid and they are thus blocked
at the boundary. This observation was also made in other two-way nesting model
implementations (Sylvain Cailleau, personal communication). The horizontal diffusion
coefficient was raised in the nested model near the boundary to reach progressively the
diffusion of the coarse grid model. This layer at the boundary with higher diffusion could
efficiently filter this small scale noise.

We have also studied the response of the vertical heat transfer of the 1D vertical GHER
model. This model has been forced by passive heat and momentum fluxes without
any relaxation towards climatological values. The results have been compared to a
simulation of the GOTM model realised under the same conditions. When the solar
heat flux is modelled as a surface flux, a by far too strong stratification was observed.
This stratification inhibits the turbulent heat transfer to the depth and consequently the
thermal stratification is reinforced. The SST relaxation towards the climatology might be
the reason why this problem was not identified earlier. The treatment of the insolation
as a volume source has significantly improved the temperature structure of the GHER
model. This has also revealed the complex connection between turbulence scheme and
the modelling of the insolation. The vertical light intensity profiles from Jerlov (1968)
and Ivanoff (1977) have been tested. The results are similar and the profile of Jerlov
(1968) was adopted.

Since SST is an assimilated variable, we are interested in improving the forecast skill
of this variable. Independently of the question how the insolation should be modelled,
the other heat fluxes can be treated in two different ways. Their values can be imposed
passively and independently of the model SST since the atmospheric models compute
also these fluxes based on the SST estimation of the atmospheric model. The problem
of this approach is that the ocean model SST and atmospheric model SST might be
inconsistent. Alternatively, these heat fluxes can be computed interactively using the
model SST according the bulk formula parameterisation. This latter approach has been
implemented. The formulation has also had a beneficial impact on the realism of the
SST predictions. The diurnal cycle of the forcings, in particular of the insolation, is now
resolved.

Several sequential assimilation schemes based on optimal interpolation and on the
Kalman filter have been reviewed. Due to the similarity of these approaches, different
steps of the methods can be exchanged. A simplified approach based on the SEEK,
RRSQRT, EnKF and the ESSE has been derived under the constraint that the method
should be feasible for a large ocean model.

This assimilation approach has been implemented in a problem and model independent
way. Multigrid models are supported as well as arbitrary linear observation operators
(applicable, e.g., to the assimilation of SST, SSH, temperature and salinity profiles)
and state vector partitioning for local assimilation. The local assimilation is parallelised
with PVM and OpenMP. This package is freely available on the GHER webpage
http://modb.oce.ulg.ac.be or from the author.

http://modb.oce.ulg.ac.be
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This assimilation strategy has been applied to a system composed of three nested
models. Sea surface temperature (SST) and sea surface height (SSH) are assimilated
into this system of nested models. The covariance of the observation error cannot be
taken into account by the current assimilation scheme. Otherwise, a m ×m matrix has
to be inverted which is often ill-conditioned. We have examined the effect of ignoring
these error covariances. Several simplified assimilation methods have been proposed.
They transform the error covariance and the observations in order that the observations
can be treated as uncorrelated ones. The accuracy of the different simplified and
suboptimal assimilation schemes has been assessed. The method inflating artificially
the error variance has lead to the best results among all schemes using a diagonal error
covariance matrix. It was also found that the assimilation of binned observations with a
transformed observation error covariance has leaded the results, which are the closest to
the optimal analysis. However, this transformed observation error covariance matrix is
also non-diagonal but it is smaller and better conditioned than the original observation
error covariance matrix.

The state vector for the data assimilation compass all nested models. This novel approach
ensures that after the analysis all models will be in a consistent state if the covariance
between the model states is correctly specified. Traditionally, data assimilation is done
in each model independently. The problem with this approach is that observations near
the nesting boundary but located on the coarse model grid correct the state of the
coarse model but cannot influence the nested fine grid model. This leads to inconsistent
boundary conditions. The unique state vector approach takes into account the correlation
between the different models. Since the error space is constructed from an ensemble of
model states, the relationship between the models states due to the feedback is taken
into account.

In general, suboptimal assimilation schemes are derived in a way that they are as close
as possible to the unapproximated assimilation scheme. This implies thus an error norm
in the state space in order to quantify this “as close as possible” whereas the optimal
assimilation schemes (e.g. the original Kalman filter) do not depend on any norm. An
error norm has been introduced based on the potential energy and the available potential
energy. This error norm combines consistently the two-dimensional elevation field and
the three-dimensional temperature and salinity fields and it does not depend on the dis-
cretisation of these fields. Furthermore, this norm is based on the physical variables and
not on statistical quantities, which may change from one particular experiment to another.

A calibration method for the error variance of observations similar to the cross-validation
technique has been proposed. This approach has been used to determine the error vari-
ance of the high resolution 1 km SST. The error variances of the 10 km SST and SSH have
been calibrated by performing several tests with different observation error covariances
and by examining the skill in predicting the SST and SSH with a lead time of one week.
With these optimised values, a two month simulation with SST and SSH assimilation
was carried out and the results were compared to assimilated and independent obser-
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vations. In addition, the realism and the validity of the ocean processes have been verified.

We have shown that the assimilation has a beneficial in the SST and SSH forecast. Most
of the time, the SST and SSH forecasts of the model with assimilation are more accurate
than the predictions of the free model. The path of the Northern Current is also better
represented in the model with assimilation than without. However, the assimilation
degrades the vertical structure of the temperature when the results are compared to
the CTD profiles of the Sirena cruise. In particular, in the interior of the basin where
the thermocline is very shallow (about 10 m), the SST assimilation deepens the mixed
layer. Possible remedies of this problem are still under study. For example, the ensemble
perturbations of the initial conditions can depend on the climatologic mixed layer depth
of this zone.

A novel application of data assimilation is also proposed. It can be used to combine
different models in order to give an improved estimate of the ocean state. In the present
case, this concept has been applied to the nested hydrodynamics model of the Ligurian
Sea and the statistical SOFT predictor (Álvarez et al., 2004). The model coupling has
been realised simply by assimilating the prediction of the SOFT system into the forecasts
of the hydrodynamic model. This approach is interesting in a forecast mode, when
observations are not available for correcting the model biases and drifts. It has been
showed that the forecast skill of the model could indeed be improved by assimilating the
SST predicted by the SOFT system.

Operational models often use climatological SST to reduce the impact of erroneous heat
fluxes. Therefore a comparison with assimilation of climatologic SST and predicted SST
was done. The experiments with hybrid assimilation system revealed that this heat flux
correction can be done more accurately by using the SST from SOFT system. The SST
forecast by the SOFT system is numerically inexpensive and by no means comparable to
a hydrodynamic model. Furthermore, the variables that can be predicted by the SOFT
system are already routinely assimilated into the operational models. Therefore, the
SOFT predictor can be integrated easily in existing operational systems.



Appendix A

Derivation of the Fokker-Plank
equation

From equation (4.22) we can derive the Fokker-Plank equation for a zero mean, normal
distributed model error in the limit of a time continuous model.

pηi
(x) = (2π∆t)−n/2(detQ)−1/2 exp

(
− 1

2∆t
xTQ−1x

)
(A.1)

M(x) = x + ∆t g(x) +O(∆t2) (A.2)

∆t is the time interval between two successive forecast steps of equation (4.22). We are
interested in the limit for ∆t −→ 0. At the first order of ∆t we have the following
relations:

M−1(y) = y −∆t g(y) +O(∆t2) (A.3)

pxi
(y −∆t g(y)) = pxi

(y) + ∆t

n∑
α=1

gα(y)
∂pxi

∂xα

+O(∆t2) (A.4)∣∣∣∣∂Mi(x
′)

∂x′

∣∣∣∣ = 1 + ∆t

n∑
α=1

∂gα

∂xα

+O(∆t2) (A.5)

From equation (4.22) one obtains:

pxi+1
(x) = −∆t

n∑
α=1

∂(gαpxi
)

∂xα

+

∫
IRn

pxi
(y)pηi

(x− y)dy +O(∆t2) (A.6)

At order zero, the last integral is the pdf of xn since pηi
tends to the Delta Dirac function

as ∆t −→ 0. The first order in ∆t is obtained by differentiating the integral with respect
to ∆t.
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∂

∂∆t

∫
IRn

pxi
(y)pηi

(x− y) dy =

∫
IRn

pxi
(y)

∂pηi

∂∆t
(x− y) dy (A.7)

=
1

2

n∑
α,β=1

Qα,β

∫
IRn

pxi
(y)

∂2pηi

∂xα∂xβ

(x− y) dy (A.8)

=
1

2
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α,β=1

Qα,β

∫
IRn

∂2pxn

∂xα∂xβ

(y)pηi
(x− y) dy (A.9)

→ 1

2

n∑
α,β=1

Qα,β
∂2pxn

∂xα∂xβ

(x) if ∆t → 0 (A.10)

where we have used the particular expression of the model error. In fact, one can show
that:

∂pηi
(x)

∂∆t
= − n

2∆t
pηi

(x) +
xTQ−1x

2∆t2
pηi

(x) (A.11)

=
1

2

n∑
α,β=1

Qα,β

∂2pηi

∂xα∂xβ

(A.12)

Finally, we get the expression of the Fokker-Plank equation, for ∆t → 0.

∂px

∂t
+

n∑
α=1

∂(gαpx)

∂xα

=
1

2

n∑
α,β=1

Qα,β

∂2pηi

∂xα∂xβ

(A.13)

The time index i has been dropped, since the pdf px is a continuous function of time.



Appendix B

Some matrix identities

For all symmetric matrices A and C and for all matrices B of conforming dimension, we
have:

C−1 −C−1BT
(
BC−1BT −A

)−1
BC−1 =

(
C−BTA−1B

)−1
(B.1)

This is a special case of the Sherman-Morrison-Woodbury formula. From this last equa-
tion, one can show that:(

A−1 + BTC−1B
)−1

BTC−1 = ABT
(
C + BABT

)−1
(B.2)

Instead of performing the inverse in space of matrix A the inverse is done in space of
matrix C.
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Appendix C

Eigenvector decomposition of
covariance matrices

Covariance matrices are symmetric and positive definite. If P is a n×n covariance matrix,
then it can be expressed in terms of a n×m matrix S by:

P = SST (C.1)

This decomposition is obtained by construction of an error covariance estimated by an
ensemble for example. In this case m is much smaller than n. We show here that it is
possible to obtain the eigenvectors and eigenvalues of P without forming P explicitly.

The singular value decomposition of the matrix S is given by:

S = UΣVT (C.2)

where Σ is a r × r matrix containing the non-zero singular values of S. Its size r is thus
the rank of the matrix S. The columns of U and V are orthonormal (UTU = I and
VTV = I). The singular value decomposition of S is directly related to the eigenvalue
decomposition of P since:

P = SST (C.3)

= UΣVTVΣUT (C.4)

= UΣ2UT (C.5)

The matrices Σ2 and U contain thus the non-zero eigenvalues and the corresponding
eigenvectors of P. The matrix V is composed of the eigenvectors of the m × m matrix
STS since:

STS = VΣUTUΣVT (C.6)

= VΣ2VT (C.7)
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An efficient way to compute the eigenvectors of the model error covariance P = SST is
thus to form the matrix STS. An eigenvalue decomposition of this m ×m matrix gives
V and Σ2:

STS = VΣ2VT (C.8)

The eigenvectors U of the covariance P with non-zero eigenvalues are finally obtained by:

U = SVΣ−1 (C.9)

It is important to note that the eigenvectors of P represented in terms of its square roots
can be computed without forming this matrix explicitly.



Appendix D

Derivation of the Kalman filter
analysis from a Bayesian approach

The Kalman filter analysis can be derived from the Bayes formula assuming Gaussian
error statistics for the a priori model state xf and for the observations yo. Gaussian pdf
can be entirely described by their mean and their covariance. The pdf of the a priori
model state xf and of the observations yo given the model is in the state x can therefore
be written as:

px(x) = C1 exp

(
−1

2
(x− xf )TPf−1

(x− xf )

)
(D.1)

pyo(yo|x) = C2 exp

(
−1

2
(yo −Hx)TR−1(yo −Hx)

)
(D.2)

where C1 and C2 are normalisation constant such that the integrated probability is one.
From the Bayes rule, the a posteriori pdf is then:

px(x|yo) = C3 exp

(
−1

2
(x− xf )TPf−1

(x− xf )− 1

2
(yo −Hx)TR−1(yo −Hx)

)
(D.3)

From this expression it is not obvious what the mean and the covariance of this pdf is.
But since it is a quadratic expression in x, we already now that the a posteriori pdf is
Gaussian. Therefore we seek its mean xa and covariance Pa, such that:

(x−xf )TPf−1
(x−xf )+ (yo−Hx)TR−1(yo−Hx) = (x−xa)TPa−1(x−xa)+C4 (D.4)

The additional constant C4 has no importance here, since it can be absorbed into the
normalisation constant of the pdf. By requiring that the 1st and the 2nd derivative of
the rhs and lhs of the last equation are equal, one obtains xa and P a:

xa = Pa
(
Pf−1

xf + HTR−1 yo
)

(D.5)

Pa−1 = Pf−1
+ HTR−1H (D.6)
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approach

Equations (D.5) and (D.6) describe the Kalman filter update. It must be noted that
alternative formulation of these equation exists. They are derived in section 4.3.3.



Appendix E

EOF as an optimal function basis for
representing a series of fields

For data analysis purposes geophysical fields are often projected onto a basis of functions
such as Fourier modes or wavelets. A common technique to separate the noise from the
deterministic signal or to limit the number of variables to interpret is to truncate the
expansion to the most relevant basis functions. EOFs are widespread in ocean and atmo-
spheric data analysis since they constitute the optimal function basis for approximating
a series of fields by a truncated linear combination of basis functions.
The m× n matrix D contains a time series of spatial fields. The first index i is the space
index and the second index j is the time index. We want to describe the variability of
this field in a r dimensional subspace S1. The columns of the m × r matrix U1 are a
orthonormal basis of this subspace. In matrix notation, the truncated expansion can be
written as:

D = U1A1 + ε (E.1)

The r × n matrix A1 contains the amplitudes of each basis vector and m × n matrix ε
represent the error due to the fact that the dimension of the subspace is less than the
dimension of the initial data space. Our goal is to find the vector basis U1 and the
amplitudes A1 such that the total error ‖ε‖2 is minimum. The total error is defined as:

‖ε‖2 = tr(εT ε) (E.2)

By taking into account that the columns of U1 form a orthogonal basis (UT
1 U1 = I), this

error can be written as:

‖ε‖2 = ‖UT
1 D−A1‖2 + ‖I−U1U

T
1 D‖2 (E.3)

For a given basis U1, the optimal amplitudes are therefore:

A1 = UT
1 D (E.4)

Consequently the error ε is orthogonal to the subspace S1

εTU1 = 0 (E.5)
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fields

The error ε lies therefore in the n − r dimensional subspace S0 perpendicular to the
subspace S1. If the columns of the n× (n− r) matrix U0 is an orthonormal basis of this
subspace S1, then:

ε = U0A0 (E.6)

The entire signal rejected by the truncated series of basis vectors lies in the subspace S0.
Both spaces are complementary and if the space S0 known then also the space S1 is known
and vice versa. It appears to be simpler to derive first the basis function of the space S0.
The total error can be expressed as:

‖ε‖2 = ‖UT
0 D‖2 (E.7)

The optimal basis can be found by minimising the following cost function J(U0)

J(U0) = ‖ε‖2 = tr(UT
0 DDTU0) (E.8)

under the constrain that the columns of U are orthonormal:

UTU = I (E.9)

There are r2 scalar constrains on the matrix U. We introduce this constrain by the
Langrangian multiplier technique. The new cost function is:

J(U0) = tr(UT
0 DDTU0) + tr(

[
I−UT

0 U0

]
Λ) (E.10)

where the r × r matrix Λ holds the Langrangian multipliers. The cost function reaches
its minimum (or maximum) if a small perturbation of U0 does not modify the value of
the cost function in the first order of the perturbation.

δJ = J(U0 + δU0)− J(U0) = 2tr(δUT
0

[
DDTU0 −U0Λ)

]
) = 0 (E.11)

This must be true of any perturbation, thus

DDTU0 = U0Λ (E.12)

This expression shows that the basis functions must be a linear combination of n −
r eigenvectors of the matrix DDT . From equation (E.8) one can show that the total
truncation error ‖ε‖2 is the sum of the corresponding eigenvalues. This error is minimum
if the columns of U0 are the eigenvectors with the smallest eigenvalue. Since the spaces
S0 and S1 are perpendicular to each other, from a basis of one space we can determine a
basis of the perpendicular space. The optimal basis U1 is therefore formed by all other
eigenvectors of DDT , i.e. the eigenvectors corresponding to the largest eigenvalues.
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Notations

Physical variables

Symbol Description Ensemble

z depth, zero at the reference surface and negative in
water

IR

ζ surface elevation computed from the reference sur-
face z = 0

IR

h ocean floor depth computed from the reference sur-
face z = 0

IR

v velocity IR3

u horizontal velocity IR3

w vertical velocity IR

f Coriolis frequency IR

T temperature IR

S salinity IR

k turbulent kinetic energy IR

q generalised pressure IR

p pressure IR

pb bottom pressure IR

ρ0 reference density IR

g gravity constant IR

b buoyancy IR

N Brunt-Väisälä frequency or stability frequency IR

M Prandtl frequency IR
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Basic concepts of data assimilation

Symbol Description Ensemble

n dimension of the model state space IN

m number of observation at a given time IN

i time index IN

ti time of the ith instant IR

xi model state vector IRn

xt
i true model state vector IRn

xf
i a priori model state vector (f: forecast) IRn

xa
i a posteriori model state vector (a: analysis) IRn

ζf
i error of the a priori model state vector IRn

ζa
i error of the a posteriori model state vector IRn

Pf
i error covariance of the a priori model state vector IRn×n

Pa
i error covariance of the a posteriori model state vec-

tor
IRn×n

Mi(·) dynamical model IRn → IRn

Mi linear dynamical model or tangent linear model of
Mi

IRn×n

fi External forecings of the linear model IRn

ηi error of the model dynamics IRn

Qi error covariance of the model dynamics IRn×n

yo
i observations IRm

Hi(·) observation operator IRn → IRm

Hi linear observation operator or tangent linear oper-
ator of Hi

IRm×n

εi error of the observations IRm

Ri error covariance of the observations IRm×m

xi initial condition IRn

ηi error of the initial condition IRn

Pi error covariance of the initial condition IRn×n
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Symbol Description Ensemble

pxi
(x), pxf

i
(x) a priori probability density function of xi

pηi
(x) probability density function of the error of the

model dynamics

pyo
i
(y) probability density function of the observations

pyo
i
(y|x) probability density function of the observations

provided the model is in state x

pxi
(x|yo

i ), pxa
i
(x) a posteriori probability density function provided

the observation yo
i

Ki Kalman gain IRn×m

J(x), J(K) cost function

W diagonal matrix defining the scalar product of two
vectors x1 and x2 by xT

1 Wx2

IRn×n

Stochastic Kalman Filter

Symbol Description Ensemble

N ensemble size IN

k ensemble index, k = 1, . . . , N IN

xf
i

(k)
,xa

i
(k) ensemble of state vectors representing the a priori

and a posteriori states
IRn

Pf
ei
,Pa

ei
ensemble covariance of the a priori and a posteriori
state vectors

IRn×n

ηi
(k) ensemble of error of the model dynamics IRn

ζi(k)
ensemble of error of the initial condition IRn

ε
(k)
i ensemble of measurment errors IRm

E matrix whose columns are the measurment errors
multiplied by 1√

N−1

IRm×N

yo
i
(k) ensemble of observations IRm

Rei
ensemble covariance of the measurment errors IRm×m

N(x,P) Gaussian pdf with mean x and covariance P
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Deterministic Kalman filters

Symbol Description Ensemble

Sf
i square root matrices of a priori error covariance

matrix , Pf
i = Sf

i S
f
i

T
.

IRn×r

Uf
i right singular vectors of Sf

i , Sf
i = Uf

i Σ
f
i V

f
i

T
(or

eigenvector of the a priori error covariance matrix,

Pf
i = Uf

i Σ
f
i

2
Uf

i

T
)

IRn×r

Σf
i diagonal matrix containing the singular values of

Sf
i (or the square root of the eigenvalues of Pf

i )
IRr×r

Vf
i right singular vectors of Sf

i IRr×r

P̃f
i error covariance of the a priori state vector ex-

pressed in the error subspace, Pf
i = LiP̃

f
i L

T
i

IRr×r

Sa
i ,U

a
i ,Σ

a
i ,V

a
i , P̃

a
i idem but for the a posteriori state

Li matrix whose columns define the error subspace.
The columns are not necessary orthogonal.

IRn×r

Q̃i error covariance of the model dynamics error ex-
pressed in the error subspace, Qi = LiQ̃iL

T
i

IRr×r

K̃i Kalman gain expressed in the error subspace, Ki =
LiK̃i

IRr×m

R̃i error covariance of the observations including the
rank reduction truncation error of Pf

IRm×m

ρ forgetting factor [0, 1]
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